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Many many mesons



QCD @ the Exascale

• Goal: understanding nuclear physics from QCD 

• Multi hadron systems define nuclear physics

• Complexity and precision frontier

• What do we want to know?

• Spectra

• Properties/matrix elements

• Reactions



Nuclear physics from QCD



Nuclear physics from QCD

• Can we compute the mass of 208Pb in QCD?
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Nuclear physics from QCD

• Can we compute the mass of 208Pb in QCD?

• Long time behaviour gives ground state energy 

up to EW effects

• But...
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t→∞−→ # exp(−MPbt)
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Nuclear physics from QCD

• Contractions: (A+Z)!(2A-Z)!

• Signals for very massive states
(numerical precision)
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• Contractions: (A+Z)!(2A-Z)!

• Signals for very massive states
(numerical precision)
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Nuclear physics from QCD

• Contractions: (A+Z)!(2A-Z)!

• Signals for very massive states
(numerical precision)

• Small energy splittings

• Statistical noise: exponentially 
increases with A

keV

73Ge



Many many mesons 

• Many meson systems: a precursor to nuclei

• Meson condensates: interesting 
state of matter with a complex 
phase diagram

• finite µI: BEC-BCS 
crossover 

• Vector condensation?

• Kaon condensation may be phenomenologically 
relevant in n-stars [Kaplan/Nelson]
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Few meson (N<13) systems

Phys. Rev. Lett. 100:082004, 2008
 Phys Rev D78:014507, 2008
 Phys Rev D78:054514, 2008

Phys. Rev. Lett. 102:032004, 2009



Many boson systems

• Large volume expansion of ground state energy of n 
meson system to 1/L7 

• 2 & 3 body interactions (N body: L-3(N-1))

• n=2: reproduces expansion of Lüscher

[Bogoliubov ‘47][Huang,Yang ‘57][Beane, WD, Savage PRD76;074507, 2007;   WD+Savage PRD77:057502,2008]
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• Consider   π+ correlator (mu=md)

Many mesons in LQCD
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• Consider n π+ correlator (mu=md)

• n!2 Wick contractions: (12!)2 ~ 1017

• Maximal isospin: only a single quark propagator

Many mesons in LQCD
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Lattice details

• Calculations use MILC gauge configurations

• L=2.5 fm, a=0.12 fm, rooted staggered 

• also L=3.5 fm and a=0.09 fm

• NPLQCD: domain-wall quark propagators

• mπ ~ 291, 318, 352, 358, 491, 591 MeV

• 24 propagators / lattice in best case

• Iz=n=1,...,12 pion and (S=n) kaon systems



n-meson energies
• Effective energy plots: log[Cn(t)/Cn(t+1)]

DWF on MILC
mπ = 319 MeV

a=0.09 fm, 283x96
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Bosons in a box

• Large volume expansion of GS energy of n meson 
system to 1/L7 

• 2 & 3 body interactions (N body: L-3(N-1))

• n=2: reproduces expansion of Lüscher

[Bogoliubov ‘47][Huang,Yang ‘57][Beane, WD, Savage PRD76;074507, 2007;   WD+Savage PRD77:057502,2008]
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2π+ and 2K- interaction
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3π+ and 3K- interaction
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Naïve dimension analysis: 1

• First QCD three body interaction



• For large n: Bose-Einstein condensate

• 1/L expansion: analytic form of EOS 

• Chemical potential µ(ρ) (and pressure) numerically 
using finite difference

• Compare with LOχPT [Son & Stephanov]

Equation of State
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Isospin Chemical Potential

2+3 body fit No 3 body LOχPT
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Mixed systems: pions & kaons

[W Detmold, B Smigielski arXiv:1103.4362 (to appear in PRD)]

keynote:/Users/wdetmold/wdetmold/Talks/DukeTNTColloquium_Nov10.key?id=BGSlide-47
keynote:/Users/wdetmold/wdetmold/Talks/DukeTNTColloquium_Nov10.key?id=BGSlide-47


n pions and m kaons

• Weakly interacting two species systems: pions and 
kaons  - complexity

• En,m of n pions and m kaons depends on three 2-
body and four 3-body interaction parameters 

• Perturbative form is known for weakly interacting 
case [Smigielski & Wasem ‘08] 

• Matching to lattice energies allows for extraction of 
interaction parameters



LQCD calculations

• One ensemble of anisotropic clover lattices

• Dynamical Nf=2+1 lattices from JLab

• mπ=390 MeV, as=0.123 fm, ξ=3.5, 203x128

• ~30K measurements: ~75 sources 
on ~400 cfgs

• Anti-periodic BCs for quarks (periodic for mesons)

• Correlators have complicated time dependence

• Correlators for all sets of {n,m} with n+m<13



• Extend single species construction

where

• Reduced symmetry: contractions significantly more 
complex – n=6 pions, m=6 kaons: 1500 terms! 

• Can show the expected behaviour is

LQCD correlators
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Four pion correlation
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Four pion correlation
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Four pion correlation
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Analysis

• Extracting the eigen-energies (or interaction 
parameters) from these correlators is difficult

• Correlations between different {n,m} 

• Huge parameter space, O(90) observables 

• C4π,2K involves 18 parameters

• Cascading fit of more and more {n,m}

• Augment χ2  via Bayesian priors, VarPro



Thermal pollution

Investigations of QCD at non-zero isospin density
Zhifeng Shi1, William Detmold 1,2

1 The College of William and Mary, Williamsburg,VA 2 Jefferson Lab, Newport News, VA

Abstract
We investigate QCD at large isospin density induced by explicit construction of many pion
systems via multi-source recursion relations. At large isospin density, corresponding to an
isospin chemical potential µI ∼ mρ, we find indications of a phase transition to a conjectured
ρ-condensed phase.

1 Methodology

1.1 Recursion relation in spatial space

In order to explore system containing up to 12M π+’s, M different source(s) are required because
of the Pauli principle. The correlation function for a system with ni-π

+ in the ith source is:

C(n1π
+
1 ,..., nmπ+

m)
(t) = 〈

(
∑

x

π+(x, t)

)n(
π−(y1, 0)

)n1

...

(
π−(ym, 0)

)nm

〉 , (1)

Calculating this correlation function from Wick’s theorem involves 12M !12M ! contractions,
which make the study for a system of large number of π+’s extremely time consuming. However
the recursion relation of correlation functions, discovered in reference[1], makes the study of such
system feasible. Correlation function

C(n1π
+
1 ,..., nmπ+

m)
(t) = (−)n




∏

i

ni!



 〈 Q(n1,n2,...,nm) 〉 , (2)

where n̄ =
∑m

i=1 ni and Q(n1,n2,...,nm) satisfies the ascending recursion relation:

Q(n1+1,n2,...,nm) = 〈 Q(n1,n2,...,nm) 〉 P1 − n Q(n1,n2,...,nm) P1
... + 〈 Q(n1+1,n2,...nk−1,...,nm) 〉 Pk − n Q(n1+1,n2,...nk−1,...,nm) Pk
... + 〈 Q(n1+1,n2,...,nm−1) 〉 Pm − n Q(n1+1,n2,...,nm−1) Pm , (3)

Initial conditions are Q(1,0,...,0) = P1 = A1, Q(0,1,...,0) = P2 = A2, · · · , where Ai are uncontracted
single pion correlators.

Descending recursion relations also exist and are usefull in constructing large correlators.

Qn =
M∑

k=1

1

N + 1− n̄
〈Qn+1k

A−1
(
Pk · A−1

)
〉 · IN −Qn+1k

A−1
(
Pk · A−1

)
(4)

Initial condition is Q12,...,12 = (N − 1)! det(A) · IN .
The correlation functions of two species from multiple sources have similar recursion relations,

which are also available in the original paper[1].

1.2 The recursion relation in momentum space

The correlation function of a system having n1-π
+ in the first source and n2-π

+ in another
source with total momentum n1pf1 + n2pf2, is:

Cn1π+,n2π+ (t) = 〈
2∏

i=1




∑

xi,x′i

e−i(pi1x1−pi2x′i)u (xi, t) γ5d (x′i, t)




ni

·
n∏

i=1




∑

yi

eipfiyid (yi, 0) γ5u (yi, 0)



〉

where n1p
1
1 + n2p

2
1 − n1p

1
2 − n2p

2
2 =

∑n
i=1pfi.

Each choice of pij, i, j = 1, 2 satisfying this relation is an independent measurement. Replacing
propagators in the spatial space by propagators constructed from momentum sources, the same
recursion relation still holds. The only difference is the construction of uncontracted correlation
functions Ai,j.
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[1] W. Detmold and M. J. Savage, Phys. Rev. D82, 014511 (2010), 1001.2768.
[2] D.T. Son and M.A. Stephanov, Phys. Rev. Lett. 86, 592 (2001), hep-ph/0005225v2
[3] S.J. Hands and C.G. Strouthos, hep-lat/0408007v1

2 Results

Because of the finiteness of the temporal extent and the easily factorisable nature of the multi-
hadronic systems being constructed, thermal effects are particularly important so the correlation
functions have the form:

Cnπ+ (t) =
n∑

m=0

(
n

m

)
Zn
me−(Em+En−m)T/2 cosh ((Em − En−m) · (t− T/2)) + · · ·

where dots represent higher excitations, T is the maximal value of the temporal extent and En
is the energy of a system of n-π+. The dominant state comes from all π+’s propagating in the
same direction, and thermal states are from some π+’s propagating in one direction while the rest
propagate in the opposite direction.

2.1 Verify the dispersion relation

This calculation is done on an anisotropic 163 × 128 lattice with ξ = 3.5. on the lattice only
discrete momentum 2π

L n are allowed . Enπ+ of systems with total momentum pt = n · p, for
p = (0, 0, 1), (0, 1, 1), (0, 0, 2), have been extracted for n = 4, 3, 2 respectively and are fitted into

the dispersion relation: E2(n,pt)
n2 − (c·pt

n )2 = E2(n,0)
n2 , where pt = n · p and got |c| = 1.015(32),

which confirms the validity of this method.

2.2 One species from single source

For notational convenience:p11 → p1, p
1
2 → p2, p

2
1 → p3, p

2
2 → p4.

Azimuthal symmetry ensures many combinations of p1,p2 be independent measurements of the
same physics , and also provides more configurations. As Enπ+ extracted from different choices of
p1 and p2 are the same within errors, here we choose p1 = p2 = (1, 1, 1) for further discussion.
Enπ+’s extracted for fits with and without one excited state in addition to the thermal states
discussed above from different time intervals give consistent results.
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FIG[2.2]:The left panel shows energies of a rest system of n-π+(Enπ+) extracted from both
methods and the right panel compares Z0.

Decomposing Cnπ+(t) into different contributions gives much more insight into how
much each state contributes. Let’s take C12π+(t) for example. The green line is from
the first excited state, the blue is the ground state and other lines are thermal states.
The zeros temperature ground state is not dominant in any region of this correlator.
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2.3 One species from two sources

By choosing p1 = p2, p3 = p4 but p1 (= p3 systems having up to 24π+ are studied by the same
recursion relation, and Enπ+ are extracted as before. As there are more ways to construct a n-π+

system and the recursion relation forces us to calculate allQ’s before getting to 24-π+s’, which costs
100 times more than the one source case. Similarly system of 36 π+’s requires a third source, and
becomes 100 times more expensive again. However a new method has rescently been constructed to
calculate correlation functions much more faster, allowing calculation of systems of at least 96 π+’s.
C40π+(t) calculated with this new method from 4 sources in a single configuration is shown below.
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FIG[2.3]: Left panel shows En1π+,n2π+ extracted from Cn1π+,n2π+ plotted against
x = 2n1 + n2. Statistical error and systematic error are added up in quadrature. Right
panel is C40π+(t) calculated from a new method.

2.4 Isospin chemical potential(µI)

µI is defined as µI (n) = dE
dn , which are calculated by applying backward derivative on the

lattice. Calculations on all lattice sizes, 163× 128, 203× 128 and 243× 128, give consistent results.

FIG[2.4] µI
mπ+

−1 is plotted against the isospin density ρI , which is defined as the number of
n
V , where V is the volume of the system computed with the lattice spacing a = 0.125fm.
The black line is the prediction from χPT[2].

At small ρI , µI behaves as expected from the χPT, but µI turns over and flats out at larger
ρI , which is out of our expectation. Our conjecture is that at this ρI the system goes from a
π-condensation phase into a phase that also contains a condenstate of a particular component of
ρ mesons[3]. Further investigations are being done by directly putting a ρ+ into π+-medium, and
studying the behavior of the screening mass of ρ+ as a function of the density of π+. Preliminary
results do show an unusual behavior at the density where we suspect a phase transition.

At no point does the ground state dominate the correlator!!!



Extracted energies

• Boxes correspond 
to extracted energies
and their uncertainties

coefficients from the measured energies using Eqs. (4.5)
and (4.6). These determinations rely on a second bootstrap
analysis involving a resampling of the extracted energies.
The bootstrapping procedure for a specific correlation
function yielded P energies, and these formed the boot-
strap samples for the extraction of the two- and three-body
parameters.

Once the best fit multimeson energies were known, a
very similar procedure used for the analysis of the corre-
lators was used to find the !a’s and !!’s. Since a bootstrap
ensemble exists for every best fit energy value, we created
an energy sample, E" such that " 2 ½1;P ". This sample
carries an additional vector index that labels the energies
within the vector. In the case of single-species pion ener-
gies (the kaon case is identical), an energy vector initially

composed of E" ¼ fEð"Þ
2;0 ; E

ð"Þ
3;0 ; E

ð"Þ
4;0 g was used to fit to !a##

and !!3;###. We included another energy and refitted the
interaction parameters and repeated this until all the ener-
gies were exhausted. In the multispecies case, a base set of

fEð"Þ
2;0 ; . . . ; E

ð"Þ
12;0; E

ð"Þ
0;2 ; . . . ; E

ð"Þ
0;12g along with ten randomly

selected multispecies energies was created and fits per-
formed for all seven hadronic parameters. This first set
thus made use of 34 different energies. This set was en-
larged by one, the parameters were refitted, and the process
repeated until all 90 energies were used. The energy co-
variance matrix used in these fits is defined according to

C ðEÞi;j ¼
1

P & 1

XP

"¼1

ðE";i & hEiiÞðE";j & hEjiÞ; (5.6)

such that hEii ¼ ð1=P ÞPP
"¼1 E";i, and the energy $2 on

each bootstrap is defined as

$2
"¼

X

i;j

ðE";i&f";ið !a; !!ÞÞCðEÞ&1
i;j ðE";j&f";jð !a; !!ÞÞ; (5.7)

where fð !a; !!Þ is shorthand notation for the fit functions in
Eqs. (4.4), (4.5), and (4.6).

The systematic errors assigned to the !a’s and !!’s are
more complicated than those of the energies. Given a
particular energy set of N energies that are used to
make a determination of !a’s and !!’s there are 3N different
combinations of the intervals that must be fit in order to
completely propagate the systematic uncertainties of the
energies to those of the interaction parameters (it is 3N

because there is a ½tmin; tmax" for each best fit energy as well
as its systematic counterparts corresponding to the shifted
time interval in the forward and backward direction). Even
in the single-species case, when N ¼ 10, there are al-
ready'6( 104 combinations. For the multispecies case, it
is too costly to fit all these permutations. Rather, we only fit
Oð103Þ randomly chosen permutations and take the differ-
ence of the mean of this set from the best fit !a and !! as the
systematic error. From fitting all permutations in the

single-species case, up to N ¼ 9, it was seen the system-
atic error stabilized well before the total number of combi-
nations was computed and we assume this is also the case
for the two-species case.

VI. RESULTS

A. Energies

Using the methods discussed above, we extracted the
energies of the mixed and pure species system, from all 90
correlators. The final extracted values are shown in Tables I
and II below, along with their associated fit ranges. These
energies are shown in a three-dimensional plot along with
their respective uncertainties in Fig. 1.
The fits become progressively more difficult as the

number of mesons grows because of the increasing thermal
contamination. This is directly reflected in the quality of
the fits decreasing for large meson number in both the pure
species and mixed-species case. Fits to example correlators
are shown in Figure 6(a) 19.

B. Interactions

The extractions of interaction parameters from mixed-
meson energies were performed to yield the three scatter-
ing lengths and four three-body coefficients. This work
builds upon the studies of [8–10] and presents the first
measurements of !!3;##K, and !!#KK since these parameters
can only be measured within the framework of the mixed-
meson system.
The most straightforward determination of the scattering

lengths is given by using the eigenvalue relation from
Eq. (4.1). Using this, we find

0

5

10

N
0

5

10

NK

0.5

1.0

1.5

EN ,NK

FIG. 1 (color online). Energy of multimeson states.
Uncertainties shown are result 24from combining statistical and
systematic uncertainties in quadrature. 25

LATTICE QCD STUDY OF MIXED SYSTEMS OF PIONS . . . PHYSICAL REVIEW D 00

7



• Energies allow us to interaction parameters

• Single species parameters consistent with literature

• Predictions for mixed interactions

Interaction parameters

lattice spacing and correspond to different discretizations,
so agreement is not necessary. The I ¼ 1, KþKþ scatter-
ing length was also determined by the NPLQCD
Collaboration in Ref. [57]. An analysis of the two-
point kaon correlator yielded a value of jmKaKKj ¼
0:497ð10Þð22Þ, again atm! % 350 MeV. Analysis of multi-
kaon correlators [10], led to jmKaKKj ¼ 0:503ð11Þð19Þ and
mK !"3;KKKf

4
K ¼ &0:1ð2Þð5Þ where the uncertainties are

statistical and systematic, respectively. The !K scattering
length has been investigated in quenched [58] and
full QCD [59] and the unquenched determination at
m! % 350 MeV ism!K !a!K ¼ 0:155ð40Þ. Hence, it is clear
the current results are generally consistent with other
groups’ extractions. The mixed-species three-body pa-
rameters are novel results and are found to be of natural
size and positive.

C. Isospin and hypercharge chemical potentials

As we have determined the dependence of the energy of
the mixed-meson systems on the number of pions and
kaons, we can construct the isospin and hypercharge (or
strangeness) chemical potentials using finite differences
following Refs. [9,10] where systems of pions and kaons
were investigated separately. In Refs. [9,10], remarkable
agreement was found between the numerical results and
the leading order #PT prediction [60] of the relation be-
tween the isospin (hypercharge) density and chemical
potential

$j ¼
f2j%j

2

!
1&

m4
j

%4
j

"
; (6.4)

with j 2 ð!; KÞ. The situation here is more complicated
since there are finite differences acting in various
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FIG. 6 (color online). Scattering parameters and three-body
interactions are shown. The meaning of the points and regions
is the same as in Fig. 5.
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FIG. 7 (color online). Scattering parameters and three-body
interactions are shown. The meaning of the points and regions
is the same as in Fig. 5.

0.18 0.20 0.22 0.24 0.26 0.28 0.30
m a

FIG. 8 (color online). The values of jm!a!!j obtained by
different groups with pion masses m! % 350 MeV are shown.
From bottom to top, the data are from NPLQCD [54], NPLQCD
[8,9], ETMC [56], the present work’s single-species value, and
the present work’s multispecies value, respectively. Note that
these calculations are at nonzero lattice spacing and use different
discretizations so complete agreement is not expected.
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NPLQCD

NPLQCD

ETMC

Single species

Mixed species

m! !a!! ¼ 0:225" 0:001" 0:023;

mK !aKK ¼ 0:4465" 0:0006" 0:0266;

m!K !a!K ¼ 0:1560" 0:0004" 0:0095:

(6.1)

The three-body coefficients can only be determined within
the framework of Eqs. (4.4), (4.5), and (4.6). We also use
this same analysis to provide a check on the above results.
Given that our analysis provides multiple20 determinations of
the interactions parameters for varying numbers of combi-
nations of energies used in the fits, these must be combined
in some way to obtain the final values. Since each separate
extraction can be viewed as a somewhat independent mea-
surement, the final value given is taken to be the mean from
the set of all extractions. The final uncertainties on the
extractions are combinations of statistical uncertainties,
systematic uncertainties obtained from variation of the
fitting windows as discussed in Sec. VD, and a second
systematic uncertainty determined from the standard de-
viation of the full set of extractions, combined in quad-
rature. The systematics are the largest source of
uncertainties in the results. The individual extractions of
the various parameters and the final extractions are shown
in Figs. 3–7. The error bars shown combine the statistical
and systematic uncertainties as discussed in Sec. V in
quadrature. The shaded regions with thin borders denote
the final results and their uncertainties. For the mixed-
species extractions, the second shaded band with thick

borders denotes the range of uncertainty in the quoted
values from the single-species analysis. These are shown
together so the reader can see the overlap region between
both sets of results. The poorest behavior originates from
!"3;!!! where the mixed-species results drift away from the
pure species one. The final values of the interaction pa-
rameters for the single-species case are

mK !aKK ¼ 0:444" 0:011;

m! !a!! ¼ 0:224" 0:031;

mK !"3;KKKf
4
K ¼ 0:11" 0:28;

m! !"3;!!!f
4
! ¼ 1:81" 0:52;

(6.2)

whereas for the multispecies case we find

mK !aKK ¼ 0:461" 0:010;

m! !a!! ¼ 0:271" 0:021;

m!K !a!K ¼ 0:166" 0:016;

mK !"3;KKKf
4
K ¼ #0:08" 0:12;

m! !"3;!!!f
4
! ¼ 0:68" 0:33;

m!mK

m! þ 2mK
!"3;!KKf

4
!KK ¼ 0:22" 0:17;

m!mK

2m! þmK
!"3;!!Kf

4
!!K ¼ 0:45" 0:26:

(6.3)
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FIG. 2 (color online).26 Plots of the log of the fitted correlation function (red) and those based on the full data set of gauge
configurations (blue) for their respective fit intervals for representative N andM. The red envelope denotes the uncertainty in the fitted
correlator propagated from the uncertainty of the energies.27
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Chemical potentials

• LOχPT phase diagram for µI,µS [Kogut & Toublan, PRD 64, 034007 (2001)]  

• QCD calculations probe interesting region

nonorthogonal directions; the differences between EN!;NK

and EN!!1;NK
determine "I while linear combinations of

EN!;NK
; EN!!1;NK

, and EN!;NK!1 determine "S.
3 One goal

of this analysis is to see where on the "S vs "I phase
diagram [17] the states created in the lattice calculation lie.

In Ref. [17], leading order SU(3) #PT is used to predict
three distinct phases for nonzero isospin and hypercharge
chemical potential. The first is the normal phase where the
ground state has a net particle number of zero. The other
two phases are the pion-condensed and kaon-condensed
phases. The transition between the kaon-condensed phase
and the pion-condensed phase is predicted to be a

first-order phase transition, separated by the line "S ¼
ð!m2

! þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

! !"2
I Þ2 þ 4m2

K"
2
I

q
Þ=2"I, while the transi-

tion from the normal phase to either condensed phase is
expected to be of second order4 and are defined by the lines
"S ¼ mK !"I=2 and "I ¼ m!. These predictions as-
sume zero temperature and are likely softened by the non-
zero temperature at which the lattice calculation is
performed [62].

In Fig. 9, both the lattice calculations of ð"I;"SÞ and the
#PT phase boundaries are shown (dashed lines). Data
points corresponding to higher numbers of particle states
are shown in a22 orange/reddish color, while lower numbers
are given in a blueish/greenish color. Points with large
uncertainties are excluded from this figure for clarity (the
omitted data correspond to the highest particle numbers). It

is striking that the calculated chemical potentials mostly lie
near the first-order phase transition line predicted by #PT.
Further calculations with larger numbers of pions and
kaons will be enlightening, but more complex probes of
these systems may be needed to fully understand the states
that have been produced.

VII. CONCLUSIONS

In this work, we have numerically studied complex
systems of mesons of two distinct flavors, like-charged
pions and kaons, and used them to extract information
about the two- and three- body interactions amongst pions
and kaons. Where known, the interactions were found to be
consistent with previous calculations, however, two mixed-
species three-body interactions were determined for the
first time. Additionally, the isospin and strangeness chemi-
cal potentials and phase structure of the system have been
investigated, with the systems preferring to probe a region
in the ð"I;"sÞ plane where #PT predicts a first-order phase
transition.
A major aim of this work was to investigate technical

issues that arise in the analysis of complex multihadron
systems. Accounting for the thermal states that proliferate
in such systems, which easily factorize into distinct color
singlet states, proved challenging and future calculations
should avoid this by using larger temporal extents.
Additionally, a number of techniques to perform coupled
fits to theOð100Þ correlators studied were investigated and
found to be beneficial in the analysis.
In the future, calculations probing larger meson numbers

will allow further investigations of the phase structure of
these interesting QCD systems. To understand the structure
of the condensed systems created in the current and future
calculations, more complicated observables that access
transport properties may be needed; investigations in this
direction are under consideration.
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3"Kþ ¼ "S þ"I=2 with "Kþ ¼ EN!;NK
! EN! ;NK!1 and

"I ¼ EN!;NK
! EN!!1;NK4An AdS/QCD based model [61] finds these transitions to be

of first order.
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Many meson systems

[WD, Savage, Phys. Rev. D82, 014501, 2010]

[WD + Zhifeng Shi, in progress]



Large systems

• How do we deal with complexity of contractions?

• One species:                                 

• Two-species is harder, more is unfeasible

• How do we go beyond n=12?

• Previous method fails because of Pauli principle

• Avoid by using multiple propagator sources but this 
leads to contraction complexity

Nterms ∼ eπ
√

2n/3/
√

n



Few pion contractions
C1π(t) =

C2π(t) =

C3π(t) = −3 −2

−



Blocks
• Define a partly contracted pion correlator

• Time-dependent 12x12 
matrix (spin-colour indices)

• Correlators

• Functional definition

• Generalises to 

Π ≡ R1 =
�

x

Su(x, t;x0)γ5Sd(x0;x, t)γ5 =
�

x

Su(x, t;x0)S†
d(x, t;x0)

C1(t) = �Π�, C2(t) = �Π�2 − �Π2�, . . .

Πij = ūi(x)uk(x0)
δ

δūj(x)δuk(x0)
C1(t)

(Rn)ij ≡ ūi(x)uk(x0)
δ

δūj(x)δuk(x0)
Cn(t)



Recursion relation

• The block objects are simply related

• Recursion relation

• Initial condition is that 

• Can also construct a descending recursion as we 
know that R13=0 

Rn+1 = �Rn� R1 − n Rn R1

R1 = Π, Rj = 0, ∀j < 1

[WD, Savage, Phys. Rev. D82, 014501, 2010]



Multi-source systems
• To get beyond n=12, need to consider multi-source 

systems

• Consider two sources first

• C(1,2)(t) contains contractions like 

C(n1π+
1 , n2π+

2 )(t) =

� �
�

x

π+(x, t)

�n1+n2 �
π−(y1, 0)

�n1 �
π−(y2, 0)

�n2 �

x, t

y1

y2



Multi-source systems

• Multiple types of blocks needed 

• Two species case has a simple recursion relation:
First define

Then the generalisations of the Rn satisfy a recursion
Q(n1+1,n2) = � Q(n1,n2) � P1 − (n1 + n2) Q(n1,n2) P1

+� Q(n1+1,n2−1) � P2 − (n1 + n2) Q(n1+1,n2−1) P2

Aab =
�

x

Su(x, t;xa)S†
d(x, t;xb)

xa

xb

P1 =
�

A11(t) A12(t)
0 0

�
, P2 =

�
0 0

A21(t) A22(t)

�



N=24 pions
C

n(
t)

t



Higher density

• Recurrence relations become costly

• Number of applications of recurrence grows fast

• Make use of closed shells/descending recurrence

• Beyond N ~ 36 is problematic ☹

• New method: scales as N log(N)

• Limited only by computer representation of floats:
238π+ requires ~250 decimal digit precision



Higher density: µI

PRELIMINARY



Higher density: µI

Previous work

PRELIMINARY



Vector condensation

• Possible explanation: condensation of ρ mesons

• Ground state contains J=0 pairs of ρ’s replacing π‘s 

• Expected from general 
arguments [Voskresensky; Sannino,...]

• Similar expectation from ChPT+vector mesons

• Also seen in AdS models of QCD [Aharony et al.]

3

of SU(2) in 3 + 1 dimensions and up to four vector fields, two derivatives and containing only intrinsic positive parity
terms[26]:

L = −
1

4
F a

µνF aµν +
m2

2
Aa

µAaµ + δ εabc∂µAaνAµ
b Aν

c −
λ

4

(
Aa

µAaµ
)2

+
λ′

4

(
Aa

µAaν
)2

, (1)

with F a
µν = ∂µAa

ν − ∂νAa
µ, a = 1, 2, 3 and metric convention ηµν = diag(+,−,−,−). Here, δ is a real dimensionless

coefficient, m2 is the tree level mass term and λ and λ′ are positive dimensionless coefficients with λ ≥ λ′ when
λ′ ≥ 0 or λ ≥ 0 when λ′ ≥ 0 to insure positivity of the potential. The Lagrangian describes a self interacting SU(2)
Yang-Mills theory in the limit m2 = 0, λ = λ′ > 0 and δ = −

√
λ.

It is relevant to notice that in the limit δ = 0 the theory gains a new symmetry according to which we have always
a total number of even vectors in any process. This symmetry guarantees that if the δ term is absent from the start
it will not be generated dynamically. In this paper we will mainly investigate the theory in this case since it will
simplify our computations. However we will comment on the effects of such a term in a final paragraph.

The effect of a nonzero chemical potential associated to a given conserved charge - (say T 3 =
τ3

2
) - can be readily

included [11] by modifying the derivatives acting on the vector fields:

∂νAρ → ∂νAρ − i [Bν , Aρ] , (2)

with Bν = µ δν0T 3 ≡ VνT 3 where V = (µ ,'0). In appendix it is summarized the effective Lagrangian, in this basis,
after the introduction of the chemical potential. The introduction of the chemical potential breaks explicitly the
Lorentz transformation leaving invariant the rotational symmetry. Also the SU(2) internal symmetry breaks to a
U(1) symmetry. If the δ term is absent we have an extra unbroken Z2 symmetry which acts according to A3

µ → −A3
µ.

These symmetries suggest introducing the following cylindric coordinates:

φµ =
1√
2
(A1

µ + iA2
µ) , φ∗

µ =
1√
2
(A1

µ − iA2
µ) , ψµ = A3

µ , (3)

on which the covariant derivative acts as follows:

Dµφν = (∂ + i V )µ φν , Dµψν = ∂µψν , Vν = (µ,0) . (4)

The quadratic, cubic and quartic terms - in the vector fields - in the cylindrical coordinates are summarized in the
appendices.

A. The Non Derivative Terms

We first study the non derivative terms which we collect in the following potential type term:

V = −
m2

2

[
2φ∗0φ0 + ψ · ψ

]
+

(
m2 − µ2

) [
φ∗0φ0 − φ∗ · φ

]
+

2λ − λ′

2
(φ∗ · φ)2 −

λ′

2
|(φ · φ)|2 +

λ − λ′

4
(ψ · ψ)2

+λ(φ∗ · φ)(ψ · ψ) − λ′|(ψ · φ)|2 + 2µδ ψ0 (φ∗ · φ) + µδ
[
φ∗0 (φ · ψ) + c.c.

]
. (5)

We can read off the symmetries of the theory from the potential. When δ = 0, for example, we gain the discrete
symmetry ψ → −ψ. To explore the vacuum structure of the theory we consider the following variational ansatz:

ψµ = 0 , φµ = σ





0
1

eiα

0



 . (6)

Substituting the ansatz in the potential expression we have:

V = 2 σ4
[
(2λ − λ′) − λ′ cos2 α

]
+ 2

(
m2 − µ2

)
σ2 . (7)

The potential is positive for any value of α when λ > λ′ if λ′ ≥ 0 or λ > 0 if λ′ < 0. Due to our ansatz the ground
state is independent of δ. The unbroken phase occurs when µ ≤ m and the minimum is at σ = 0. A possible broken
phase is achieved when µ > m since in this case the quadratic term in σ is negative. According to the value of λ′ we
distinguish three distinct phases:
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state is independent of δ. The unbroken phase occurs when µ ≤ m and the minimum is at σ = 0. A possible broken
phase is achieved when µ > m since in this case the quadratic term in σ is negative. According to the value of λ′ we
distinguish three distinct phases:
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a lengthy but known expression of the Lagrangian coefficients. This completes the analytical study of the

dispersion relations for the case of the polar phase. We learn that the vector states orthogonal to the condensate have
isotropic dispersion relations while the ones relative to the vector component in the direction of the condensate are
not isotropic. We also find that for λ′ = 0, as anticipated in the previous section, 2 gapless excitations have quadratic
dispersion relations and hence become type II goldstone bosons. This is related to the enhancement of the global
symmetry in the potential term. In Fig. 3 we plot the gaps as function of the chemical potential for this phase in the
left panel. Before condensation each solid line corresponds to three physical states, after condensation three gapless
modes emerge and each dashed line corresponds to two states while each solid one to a single state.
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FIG. 3: We present the Gaps (E(p = 0)) for the polar phase (left panel) and the apolar (right panel) of the theory as function
of the chemical potential in units of m. Left Panel: Before condensation each line describes three degenerate massive states.
After condensation µ > m the dashed lines represent two states while the solid lines represent one state each except for the
three gapless states. We used the following values for the plot: λ = 1, λ′ = 0.33. Right Panel: Before condensation each line
describes three degenerate massive states. After condensation µ > m the dashed line represents two states (ψV ) while the solid
lines one physical state each except for the two gapless states. We used the following values for the plot: λ = 1, λ′ = −0.3.

B. The Apolar Phase Dispersion Relations and Gaps

We also solved the physical constraint for the apolar case. In this case the analytical analysis of the physical con-
straints and of the dispersion relations is complicated by the fact that the vacuum is complex. Since the computations
are instructive but technical we provided them in the last appendix and summarize here the results. In this phase we
have three broken generators but only two gapless modes: a type I and a type II goldstone boson. Since the unbroken
generator is a linear combination of a rotation and the generator for the internal U(1) symmetry the gaps and the
dispersion relations lose the straightforward and nice classification in doublets (i.e. vectors) and scalars with respect
to a standard rotation. The gaps in this phase, and for a specific choice of the couplings, are displayed in the right
panel of Fig. 3. Before condensation each line describes three degenerate massive states. After condensation µ > m
the dashed line (ψV ) represents two states while the solid lines one physical state each except for the two gapless
states. We used the following values for the plot: λ = 1, λ′ = −0.3. The dispersion relations too, in the δ = 0 limit,
display a more complex structure which does not alter the gapless excitation structure and goldstone counting.

C. Breaking the Z2 symmetry.

We now comment on what happens if we allow Z2 symmetry breaking terms such as the δ term. Before including
the chemical potential in the direction T 3 the absence of the δ term prevents an odd number of vectors to be present in
any vertex of the theory. Since this term involves 3 fields it will not affect the dispersion relations before condensation.
After condensation has taken place the vacuum structure (due to our ansatz) is also unaffected by this term. Since
the goldstone states are the fluctuations around the vacuum in the direction of some of the continuously broken
symmetries their general properties are also expected not to be disrupted. The δ term will, however, change some
of the details of the dispersion relations. The possible quadratic terms in the fields emerging after condensation will
always mix the ψ state with a φ one and their effect will be investigated elsewhere.
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of SU(2) in 3 + 1 dimensions and up to four vector fields, two derivatives and containing only intrinsic positive parity
terms[26]:

L = −
1

4
F a

µνF aµν +
m2

2
Aa

µAaµ + δ εabc∂µAaνAµ
b Aν

c −
λ

4

(
Aa

µAaµ
)2

+
λ′

4

(
Aa

µAaν
)2

, (1)

with F a
µν = ∂µAa

ν − ∂νAa
µ, a = 1, 2, 3 and metric convention ηµν = diag(+,−,−,−). Here, δ is a real dimensionless

coefficient, m2 is the tree level mass term and λ and λ′ are positive dimensionless coefficients with λ ≥ λ′ when
λ′ ≥ 0 or λ ≥ 0 when λ′ ≥ 0 to insure positivity of the potential. The Lagrangian describes a self interacting SU(2)
Yang-Mills theory in the limit m2 = 0, λ = λ′ > 0 and δ = −

√
λ.

It is relevant to notice that in the limit δ = 0 the theory gains a new symmetry according to which we have always
a total number of even vectors in any process. This symmetry guarantees that if the δ term is absent from the start
it will not be generated dynamically. In this paper we will mainly investigate the theory in this case since it will
simplify our computations. However we will comment on the effects of such a term in a final paragraph.

The effect of a nonzero chemical potential associated to a given conserved charge - (say T 3 =
τ3

2
) - can be readily

included [11] by modifying the derivatives acting on the vector fields:

∂νAρ → ∂νAρ − i [Bν , Aρ] , (2)

with Bν = µ δν0T 3 ≡ VνT 3 where V = (µ ,'0). In appendix it is summarized the effective Lagrangian, in this basis,
after the introduction of the chemical potential. The introduction of the chemical potential breaks explicitly the
Lorentz transformation leaving invariant the rotational symmetry. Also the SU(2) internal symmetry breaks to a
U(1) symmetry. If the δ term is absent we have an extra unbroken Z2 symmetry which acts according to A3

µ → −A3
µ.

These symmetries suggest introducing the following cylindric coordinates:

φµ =
1√
2
(A1

µ + iA2
µ) , φ∗

µ =
1√
2
(A1

µ − iA2
µ) , ψµ = A3

µ , (3)

on which the covariant derivative acts as follows:

Dµφν = (∂ + i V )µ φν , Dµψν = ∂µψν , Vν = (µ,0) . (4)

The quadratic, cubic and quartic terms - in the vector fields - in the cylindrical coordinates are summarized in the
appendices.

A. The Non Derivative Terms

We first study the non derivative terms which we collect in the following potential type term:

V = −
m2

2

[
2φ∗0φ0 + ψ · ψ

]
+

(
m2 − µ2

) [
φ∗0φ0 − φ∗ · φ

]
+

2λ − λ′

2
(φ∗ · φ)2 −

λ′

2
|(φ · φ)|2 +

λ − λ′

4
(ψ · ψ)2

+λ(φ∗ · φ)(ψ · ψ) − λ′|(ψ · φ)|2 + 2µδ ψ0 (φ∗ · φ) + µδ
[
φ∗0 (φ · ψ) + c.c.

]
. (5)

We can read off the symmetries of the theory from the potential. When δ = 0, for example, we gain the discrete
symmetry ψ → −ψ. To explore the vacuum structure of the theory we consider the following variational ansatz:

ψµ = 0 , φµ = σ





0
1

eiα

0



 . (6)

Substituting the ansatz in the potential expression we have:

V = 2 σ4
[
(2λ − λ′) − λ′ cos2 α

]
+ 2

(
m2 − µ2

)
σ2 . (7)

The potential is positive for any value of α when λ > λ′ if λ′ ≥ 0 or λ > 0 if λ′ < 0. Due to our ansatz the ground
state is independent of δ. The unbroken phase occurs when µ ≤ m and the minimum is at σ = 0. A possible broken
phase is achieved when µ > m since in this case the quadratic term in σ is negative. According to the value of λ′ we
distinguish three distinct phases:
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Pressure

• Measurements of En(L=16,20,24) access pressure
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Matrix elements in 
multi-hadron systems

[WD + Huey-Wen Lin, in progress]



Properties of multi-hadron systems

• Many important EW interactions with nuclei

• µd, np→dγ, Vud, 0νββ  

• How can we probe multi-hadron systems?

• External fields

• Three-point functions

• Generically difficult



Example: momentum fraction

• Mellin moments of parton distributions defined by 
forward matrix elements of local operators

• n=1 corresponds to LC momentum fraction carried 
by quarks inside H  (renormalisation scale dependent)

• Intensively studied in QCD using 3-pt functions (also 
possible using background fields

�xn�H =
� 1

−1
dx xnqH(x) �H|ψγ

{µ0D
µ1 . . . D

µn}|H� = p
{µ0 . . . p

µn}�xn�H

�xn�q ∼



EMC effect

FA
2 (x) �= AFN

2 (x)

• Medium modification of parton distributions



Pionic EMC effect

• LC momentum fraction carried by quarks in a pion 
in a dense medium c.f. in free space
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[WD + Huey-Wen Lin, in progress]



Outlook

• What lessons have pions taught us?

• Contractions require tricks

• Thermal effects ~ exp(-mπL4)

• Particularly bad in multi-hadron states

• Always present (pions from the sea)

• Precision

• Contraction of propagators

• Ultimately: HMC, propagator calculations



BiCG vs precision

[Hasegawa, Applied Linear Algebra 2003]

N=200 Toeplitz matrix, |evmin|=0.8 |evmax|~5


