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Example: Try to find people in a boat in the middle of the
ocean knowing approximately their initial position, knowing ap-
proximately the directions of the currents and the winds, and
having an uncertain observations of a later position.

Initial position

Target

Observation
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Equations of motion :

dx = f(x, t)dt+ gdW,

or, in a discrete approximation,

xn+1 = xn + δf(xn) +GW,

(from now focus on the discrete approximation).

Observations: bn+1 = h(xn+1) + V , V random.
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Special case: equations linear, pdf Gaussian, −→ Kalman filter.

Extensions: extended Kalman filter, ensemble Kalman filter, try

to fit a non-Gaussian situation into a Gaussian framework.

(more on ensemble Kalman filter later)
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Simple particle filter:

Follow a bunch of ”particles” (samples, replicas) whose empirical

density at time t = nδ approximates a pdf Pn determined by the

equations of motion and conditioned by the observations.

Given Pn:

First evolve the particles by the equations of motion alone: (gen-

erates a “prior” density).

Take the observations into account by weighting the particles.

(generates a “posterior” density).

Fails, in particular when there are many variables.
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To avoid following irrelevant particles, resample, so that you have

again a bunch of particles with equal weights. Given weights

Wk, pick θk ∼ [0,1], and set x̂n+1
k = xn+1

j for j such that

A−1∑i−1
1 Wj < θk < A−1∑i

1Wj, where A =
∑
Ak.
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Bayes theorem:

P (n+ 1|n+ 1) = P (n|n)P (xn+1|xn)P (bn+1|xn+1)/Z.

where

P (n|n) = P (x1, x2, · · · , xn|b1, b2, · · · , bn).
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Usual remedy: better choice of prior.

Q=importance density; sample Q, weight P (Xn+1|Xn, bn+1)/Q.

Problem: Q may be hard to find.

Our remedy: implicit sampling.

General idea:

Rather than find samples and then estimate their probability, first

pick a probability and then find a sample that carries it.



9/20

Given Pn, sample Pn+1 as follows:

1. Pick a sample ξ from a known, fixed, pdf, e.g. a Gaussian

exp(−ξT ξ/2)/(2π)m/2.

2. Write the (unnormalized) pdf seen by the i-th particle at step

n as P (bn+1|Xn+1
i )P (Xn+1

i |Xn) in the form exp(−F (X)), where

X = Xn+1
i and F = Fi,n.

3. Solve F (X)−minF = ξT ξ/2 (F varies from particle to particle

and at each time). This yields high probability samples.

The right pdf is sampled if map ξ → X is one-to-one and onto.
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Each value of X appears with a probability exp(−ξT ξ/2)/(2π)m/2

divided by J, the Jacobian of the map ξ → X. The proba-

bility we want to sample is exp(−ξT ξ/2)/(2π)m/2 multiplied by

exp(−minF ) The sampling weight is exp(−minF )J.

What has been gained: Each sample requires the solution of an

algebraic equation for the given particle, not a global estimate of

the whole pdf. The samples are stitched together into a global

pdf by the common reference pdf. The ”prior” is represented as

an infinite collections of functions of a fixed Gaussian, a sepa-

rate function for each particle and step. The samples have high

probability.
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Solution of F (X)−minF = ξT ξ/2 (and evaluation of J):

(Note equation is underdetermined).

Special case: h is linear and there are data at each step. The

basic equation reduces to (X − a)TA(X − a) = ξT ξ, where A

is symmetric postive definite. This is a single linear equation

connecting 2M variables. Do Choleski: A = LLT , and solve

LT (X − a) = ξT . J can be read from L.
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F convex:

Find minF . Solve the equation F (X) −minF = ξT ξ/2 for each

ξ. Often quite easy, specially when h is sparse. Obtain J either

numerically or by implicit differentiation.

Note again the equation F (X) − minF = ξT ξ/2 is underdeter-

mined; any map ξ → X that solves it will do, provided (i) it is

one-to-one (with probability 1), (ii) it is smooth at the origin,

(iii) the Jacobian J is easy to compute.
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Examples of the use of this freedom:

Suppose you can minimize F by Newton’s method (F is generally

sparse, and one always has a good starting guess). This yields

a Hessian matrix H at the minimum r. Construct

F0(X) = minF + (1/2)(X − r)TH(X − r).

Solve F0(X)−minF = ξT ξ/2, (this is linear !). The weighting is

exp(−φ0)J, where

φ0 = minF − F0(X) + F (X).

The neighborhood of ξ = 0 is still mapped on the high probability

region of X, and

F (X)−minF = F0(X)− φ0(X),

so there is no bias.
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More implementations:

Make the ansatz: Xj = µj + λjL
T
j ηj, where µj is the minimum

of F : F (µj) = φj, λj is a random unit vector: λj = ξj/|ξ|, and

L is a suitable matrix. J is found from a 1D computation. Best

choice of L: LLt = H−1, where H is the Hessian available from

the minimization of F .
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More on ensemble Kalman filter:

In the ensemble Kalman filter one solves the Fokker-Planck equa-

tion for the evolution of a pdf under the SDE, one extracts an

approximate mean and variance, and one does a Kalman step as

if the system were linear.

Implicit sampling is equivalent to solving the Zakkai equation

(evolution under both the SDE and the observations). Not

harder thna solving the FP equation, linearization is no longer

needed.
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Sparse data in time: Same devices, more dimensions:

If data available every p steps, solve

F
(
Xn+1, . . . , Xn+p)−minF (Xn+1, . . . , Xn+p)

)
= ξT ξ/2.

Higher-order accurate approximations to the SDE:

Suppose you are solving dx = f(x)dt+ dW by Klauder-Petersen:

xn+1,∗ = xn + δf(xn) + η1, (1)

xn+1 = xn + (δ/2)
(
f(xn) + f(xn+1,∗)

)
+ η2, (2)

bn+1 = h(xn+1) + η3. (3)
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The probability of (Xn+1,∗, Xn+1) is exp(−F ) where

F =
(
Xn+1,∗ −Xn − δf(Xn)

)2
/(2δ)+

(
Xn+1 −Xn − (δ/2)(f(Xn) + f(Xn+1,∗)

)2
/(2δ)

(
h(Xn+1)− b)

)2
/(2s).

Again solve F −minF = ξT ξ/2.
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Example: Stochastic Kuramoto-Sivashinski equation ut + uux +

uxx + νuuxxxx = gW (x, t), W = space-time white noise. Data

such that there are 31 linearly unstable modes. Solved by Fourier

expansion with 1024 modes, sparse observations of u (!) in

space. Comparison of mean norm of error and variance of error

with those of SIR.
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Sparse linear observations 

Reconstruction by SIR filter

Reconstruction by Implicit filter

Experiment
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Linear observations Nonlinear observations 

SIR filter

Implicit filter


