
Software for Adaptive Meshing on Large Scale 
Fluid-Structure Interaction Problems  

1. Driving Problems and Technology 
2. Uintah Software and Modeling Details 
3. Scalable Adaptive Meshing Algorithms   
4. Detonation Results and Future Work

Martin Berzins

Thanks to:  
Computer Science        Justin Luitjens, Qingyu Meng, John Schmidt
Chemistry + Mech Eng. Todd Harman,  Joseph Peterson, Chuck Wight
Steve Parker 
DoE for funding the CSAFE project from 1997-2010, DOE NETL, INCITE
NSF for funding  via SDCI and  PetaApps (Abani Patra)
TACC NICS TRAC ORNL
http://www.uintah.utah.edu



The path to exascale?

Source Al. Geist
K Machine 8PF Titan 20pf? 



DARPA Exascale Hardware Study
• DARPA public report (Peter Kogge et al.)
• Describes Challenges in going to Exascale at national level and 

petascale at  University level.

• Exascale machine Aggressive Strawman:
• 742 cores per socket, 12 sockets per node, 32 nodes 

per rack
• 166,113,024 cores, 223,872 sockets
• 4 flops per cycle per core @1.5Ghz,  1.029 PFlops
• Power 67MW! DoE aims for 25MW

• Extraordinary concurrency is the only game in town
• Power, fault tolerance, programmability are key

IMPLICATION IS PETASCALE AT LOCAL LEVEL – terascale laptops!



DARPA Exascale Software Study
• DARPA public report by (Vivek Sarkar et al.)
• (Sterling) Silver model for exascale software:

• Have abstraction for high degree of concurrency  for directed 
dynamic graph structured calculations.

• Enable latency hiding by overlapping computation and 
communications

• Minimize synchronization and other overheads
• Support adaptive resource scheduling 
• Unified approach to heterogeneous processing

• Silver model is a graph-based asynchronous-task work 
queue model.

• Some  instances of this type of approach in use now. 
CnC, Charm++, Plasma, StarSS, Uintah Very disruptive 
technology - forces us to rethink programming model

• DOES IT WORK?



Graph Based Languages/frameworks
1:
1

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

2:
2

Charm++: Object-based Virtualization  

Intel CnC:
new language for 
graph based parallelism

Plasma (Dongarra):
DAG based 
Parallel linear 
algebra 
software

Uintah Taskgraph
based PDE Solver



Weak and Strong Scalability
Strong scalability

( ,1)( , ) T nT n p
p

=

Weak Scalability
Constant time for larger problem on more cores

( , ) ( ,1)T np p T n=

Both weak and strong scalability  only if ( ,1)T n nα=
E.G.  If ( ,1) kT n nα= and k = 2
Then doubling the problem size gives four times 
as much work and hence twice runtime on 2x cores

( , ) log( )T n p n pα γ= +
More realistic model

Is fraction of time spent in global collectives at 0 0log( ) / ( )p nγ α 0 0n p



xxxxxxx









Uintah Parallel Computing Framework
• Uintah (1998-2005) used  DOE parallel computers, typical run – 512 to 

2K cores far-sighted design by Steve Parker: 

Solution of broad class of fluid-structure interaction  problems
Patch-based AMR using particles and mesh-based fluid solver          

Automated task-graph generation for scheduling parallelism
Automated load balancing 

Asynchronous communication 

User only writes “serial” code for a
serial mesh patch 

Data is pulled from a data                
warehouse and results sent
there



Uintah Parallel Computing Framework
• Uintah had “legacy” code aspects –original  design sound 
• MUCH OF THE CODE HAS BEEN REWRITTEN 

• New scalable AMR algorithm
• New  measurement-based load balancer 
• Dynamic execution (including out of order) of tasks
• New Hybrid MPI/Pthreads execution model
• Better use of Hypre solvers for time-dependent problems 
• Much algorthmic development of discretisation methods   
•
• Uintah now uses  NSF ( Ranger Kraken) DOE (Jaguar)     

computers, typical run – 2K to 196K  cores    

• How do we apply Uintah to model Developing Detonations?
How do we start to think about scaling to beyond petascale



Spanish Fork 
Accident 8/10/05

Images from KUTV and Deseret News

Speeding truck with 8000 
explosive boosters each with 
2.5-5.5 lbs of explosive
Experimental evidence suggests
that  a transition from deflagration
to detonation took place. Why?

How can we prevent this?



Counterintuitive Dual Container Experiment
left – solid explosive, right- explosive with air has  4x energy 
release 



Explosive Mass Burned Comparison

Solid 

Large 
Bore 
HollowMass

Time

Large Bore Hollow
case burns 4.5 x
Mass of solid case



ICE is a cell-centered finite volume 
method for Navier Stokes equations

MPM is a novel method that uses particles and nodes
Cartesian grid used as a common frame of reference

Uintah MPM-ICE-AMR Software

MPM (solids) and ICE (fluids) exchange data several 
times per timestep (not just boundary condition 
exchange



ICE Algorithm

Fluxing velocity  
Lagrangian

*
1/2ju + / 2 , / 2n jt t x x+ Δ + Δat

( ) ( )pq uq f q
t x x

∂ ∂ ∂
+ = −

∂ ∂ ∂

1/2 1/2
1/2 1/2( ( ) ( ))l l n n p n p n

j j j j j jq V q V t f q f q+ +
+ −= − Δ < > − < >

Eulerian 1 1 * *
1/2 1/2 1/2 1/2( ) ( )n n l l n n

j j j j j j j jq V q V t q u q u+ +
+ + − −= − Δ < > − < >

Consider convection-diffusion type form

Apply limiters at a 
number of stages 
To get a positivity
preserving algorithm



ICE Algorithm

Left 
Value 

Right
Value  

Original Algorithm for face value at  

If 

1 1
1/2

1

j j j j
j

j j

u u
u

ρ ρ
ρ ρ

+ +
+

+

+
< > =

+

1
1/2 1

1

1 ( )( ),
2

j jL
j j j j j j

j j

u u
u u r u u r

u u
+

+ −
−

−
= + Φ − =

−

1
1/2 1 1 2 1 1

2 1

1 ( )( ),
2

j jR
j j j j j j

j j

u u
u u r u u r

u u
+

+ + + + + +
+ +

−
= − Φ − =

−

1/2 1/2 1/2 1/2 0L l R R
j j j ju uρ ρ+ + + ++ >

nt

then

1/2 1/2
L

j ju u+ +< > = else 
1/2 1/2

R
j ju u+ +< > =

( )rΦ is a standard limiter as used for hyperbolic eqns



ICE Navier Stokes 
Algorithm of Kashwa
et al. Improved 08/09
for High Speed Flow

Tran and Berzins

•

Euler Equations 
Elimination of oscillations
and second order version

Examples: 

Left : Sod Shock Tube with
200 points

Right: Shu-Osher Problem
With 800 pointsModels fluids in Uintah



1

2

3

4

5

The Material Point Method (MPM)

6

Handles deformation, contact, high strain, fragmentation 
models solids in Uintah 

Particles with properties
(velocity, mass etc) 
defined on a mesh

Particle properties mapped 
onto mesh points

Forces, accelerations, velocities
calculated on mesh points

Mesh point motion calculated
but only the particles moved
by mapping velocities back to
particles  

Sulsky Guilkey Bardenhagen et al.



Directed Acyclic 
Graphs (DAGs)

• Each task defines its computation with 
required inputs and outputs

• Uintah uses this information to create a 
task graph of computation (nodes) + 
communication (along edges)

• Similar to Charm++  TBlas, CnC DAG 
approach increasingly popular for 
efficient parallelism with irregular 
communications

MPM DAG



Example Uintah Task from the ICE Algorithm

Compute face-centered Velocities:

Input variables                                           Output variables
(include boundary conditions)



Task Graph Compiling



AMR for Multiple Space/Time Scales
• Solvers that are designed to work together
• One mesh for all material phases 

Refine/coarsen 
spatial mesh where 
gradients/ errors  
are large/small 



EXAMPLE OF UINTAH MOVING MESHES WITH PARTICLES 



End to end simulation of container



Performance Improvements
• Petascale apps require 300K cores and 1M+ AMR 

patches
• Improve Algorithmic Complexity

• Identify & Eliminate O(Processors) O(Patches) via 
Tau, and hand profiling,  memory usage analysis

• Improve Task Graph Execution
• Out of order execution of task graph      e.g. 
• Approach for multicores via multi-threading

• Improve Load Balance
• Cost Estimation Algorithms based on data 

assimilation
• Use load balancing algorithms based on patches 

and a new fast space filling curve algorithm  
[Concurrency] Complexity is:

Partial Ice 
task graph

2log( ) ( ) log ( )Nb Nbc Nb c c P
P P

+ +



Load Balancing Weight Estimation
• Algorithmic Cost Models based on discretization method 

and machine, requires accurate information from the user
• Time Series Analysis used to forecast time for execution 

on each patch - automatically adjusts according to 
simulation and architecture with no user interaction

Simple Exponential Smoothing: 

Er,t: Estimated Time     Or,t: Observed Time    α: Decay Rate
Er,t+1 = α Or,t +   (1 - α)  Er,t

= α (Or,t - Er,t)    +   Er,t

Error in last prediction

[IPDPS10 paper], Charm++ uses a  similar idea without feedback



Comparison between
Forecast Cost Model  FCM
& Algorithmic Cost Model
Particles + Fluid code
FULL SIMULATION



DYNAMIC TASK EXECUTION 
When a task’s external dependencies are satisfied it can execute

External
Network



192 768 3072 12288 49152

0

10

20

30

40

50

60

70

80

90

100

T
im

e 
R

ed
uc

ed
 (

P
er

ce
nt

)

Processors

ICE Dynamic vs Static Scheduling (NICS Kraken)

 

 

Avg. Task Wait
Total Execution

Static vs
Dynamic 
Scheduling 
Improvements

Ranger has slower 
communications than Kraken
and so we see less 
improvement in overall time
through overlapping and 
out-of-order execution

62K AMD coresSun infiniband

98K AMD 6 cores CRAY Seastar torus



8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

Patch Size

M
ea

n 
T

im
e 

P
er

 T
im

es
te

p 
[s

ec
.]

ICE with different patch sizes (Kraken, with 24K cores)

 

 
Total Execution
Task Wait
Regrid & Copydata
Scheduling

Task queue length drops and wait 
time increases as patch sizes 
grow for a fixed mesh

Execution time is a trade-off 
Between granularity improvements 
and overhead due to more patches

GRANULARITY EFFECTS



Scalable AMR Regridding Algorithm
• Berger-Rigoutsos

• Recursively split patches based 
on 
histograms

• Histogram creation requires 
all-gathers O(Processors)

• Complex and does not parallelize 
well

• Irregular patch sets
• Two versions – version 2  uses 

less cores in forming histogram



(1) tag cells where refinement is needed
(2) create a box to enclose tagged cells
(3) split the box along its long direction based on a histogram of 
tagged cells
(4) fit new boxes to each split box and repeat the steps as needed.

Box is split into 2

Process is repeated on the
two new boxes

Tagged points Initial box

3 3 3 1 1 3 3 2

Number of points 
in each column

AMR regridding algorithm (Berger-Rigoutsos)



Tagged points Initial box

3 3 3 1 1 3 3 2

2
4
3
2
3
4
1

Number of points in each column

Number of 
points in 
each row

Y0

X0 X1

Y1

Seed points for creation
of boxes are (X0 Y0)  and
(X1 Y1)

The Laplacian of points 
In each row and column 
Is also used to help splitting

AMR regridding algorithm (Berger-Rigoutsos)

This step is repeated at least log(B) times 
where B is the number of patches



MPI_ ALLGATHER NEED
• Every processor has to pass its part of the histogram to every 

other so that the partitioning decision can be made
• The cost of an allgather is Log(P)

Version 1: (2B-1)log(P) messages

Version 2: Only certain cores take part
[Gunney et al.]

2P –log(P)-2 messages

Alternative: use Berger 
Rigoutsos locally on each 
processor



Scalable AMR Regridding Algorithm

• Tiled Algorithm 
• Tiles that contain flags become 

patches
• Simple and  easy to parallelize
• Semi-regular patch sets that can

be exploited
• Example: Neighbor  finding

• Each core processes subset of refinement 
flags in parallel-helps produce global patch 
set

[Analysis to appear in Concurrency]



EXAMPLE – MESH REFINEMENT AROUND A 
CIRCULAR FRONT 

Global Berger-
Rigoutsos

Local Berger-
Rigoutsos

Tiled Algorithm



The number of patches needs to grow with the number of cells
on a parallel machine – otherwise we need to partition patches

NUMBER OF PATCHES GENERATED



Theoretical Models of Refinement Algorithms 

C = number of mesh cells in domain
F  = number of refinement flags in domain
B  = number of mesh patches in the domain
Bc = number of coarse mesh patches in the domain
P  = number of processing cores
M  = number of messages

T: GBRv1 = c1 (F/P)  log(B) + c2 M(GBRv1)

T: GBRv2 = c1 (F/P)  log(B) + c3 M(GBRv2)

T: LBR = c4 (F/P)  log(B/Bc)

T: Tiled = c5 C/P 

T: Split      = c6 B/P + c7 log (P) - is the time to split large patches



Strong Scaling of Algorithms and their Components

Strong Scaling – problem size  fixed as number of cores increases
should lead to decreasing  execution time. 

Dots are data lines are models



Weak Scaling of Algorithms and their Components

Weak Scaling – problem size per core fixed as number of cores increases
should lead to constant execution time. 



UINTAH SCALABILITY

NSF NICS Kraken 6-core AMD based machine

At 98k Proc
1 16x16x16
patch per 
Core and so 
Scalability fades

Problem is
essentially
an advected
blob, but 
formulated
as compress.
Navier Stokes
In 3D



Uintah Hybrid MPI/Pthreads [TG11]
use only one copy of data warehouse per node 
as opposed to per MPI process  



Uintah Memory Used Strong Scaling 
Can prove that global memory drops to   (global memory)/(ncores)
Drop is more if Cray MPI buffers badly set….

Uintah now runs on 200K cores with only 10% of previous global 
memory per node and similar ~5% cpu times [TG11].



UINTAH SCALABILITY

DOE Jaguar 6-core AMD based machine

Problem is
essentially
an advected
blob, but 
formulated as
compressible
Navier Stokes
Equations in 
3D

Jaguar Cores



DEFLAGRATION                                   DETONATION

540K value of T in corner 5Gpa P in corner

Wave moves at ~400m/s                    Wave moves 8500m/s

How do we go from this       to             this?



DDT: 3 Phase model
1 WSB two phase burning model
Two-phase thermal decomposition- reactants--

MPM materials, products--ICE materials 
verified [Atwood]

2 Fast convective burning model
Impactor causes initial shock wave and hot 

spot/core collapse causing second shock 
which acts  as a  virtual piston which  causes 
pressurization up to a critical threshold 5.0 
GPa [Souers] activated by cracking [Berghout
et al.] Pop plot shows correlation between
LLNL experiments and computation.

3 JWL++ detonation model

Stevens Test; data 72m/s
Simulation 65m/s

ρ=ρ0 × (P/K + (1 + (P/K)^2)½) ,K=11.4 GPa
and ρ0=1840 kg/m3
Gives good agreement with HMX explosive 
activation energy [German et al.]

Pop Plot 



Loose and Tightly packed Containers 

6.0e-58.0e-5

1.6e-4kg -- 1.8e-4kg--

Mass burned



Five cases 64^3, 128^3, 256^3 512^3 1024^3 meshes



Uintah Applications• Flare Simulation
• Angiogenesis
• Vocal chord modeling
• Rocket stage 

separation
• Heart injury modeling
• Foam properties
• Granular flow

Angiogenesis



Shape Charge Simulation Guilkey Harman and Brannon 

Metal casing copper liner  deforms into 
penetrating  hypersonic jet



The Algorithms will have to change
Consider stencil pde dx,dy,dz and dt with order p 

Key metric is work per digits of accuracy in quantity of interest?

work =  K p nx ny nz nt ,                         K = stencil work constant

Reducing the error by a factor of 

Worknew =  workold

If  p=1 and f =2 first order, doubling accuracy requires 16x 
work
If  p=4  and f =2 fourth order, doubling accuracy requires 
2x work

f

4
pf

⎛ ⎞
⎜ ⎟
⎝ ⎠

Pts in space and time



The Algorithms will have to change

High order methods are widely used in some areas but…

Solution of hard problems sometimes suggests that they offer 
fewer advantages—

Non-oscillatory approximation of a front with order p 
requires (p+1) points in the front.

Mesh refinement needs to be combined with high-order 
methods

Error in quantity of interest requires adjoint-based 
remeshing methods not just gradient-based

Scalable Linear algebra solvers for exascale are a daunting  
challenge but one that is being tackled….



Detonation Diffracting 
into cylindrical volume

Detonation disrupted by 
cylindrical rods

Slow cook-off

Source DDT experts

Summary
•Uintah version of silver model works
•Silver model is not a silver bullet
•UIntah runs on 196K cores in AMR and fixed grid modes 
•Scalability aspects of Uintah investigated
•Work needed to move to full DDT model
•Need to start work on detonation reduction approaches 




