Closing in on θ_{13}

A.B. Balantekin University of Wisconsin-Madison

INT, June 2011

Current direct search limits

KamLAND and solar best fit values are not the same! CPT-violation? Other new physics?

....or is it simply ignoring θ_{13} ?

Balantekin & Yilmaz, J. Phys. G **35**, 075007 (2008) (arXiv:0804.3345 [hep-ph]).

Fogli et al., Venice ν-oscillation workshop(2008) and arXiv:0806.2649 [hep-ph]

SNO's own lowenergy threshold analysis

 θ_{13} = 7.2 ^{+2.0}_{-2.8} deg

Note: Non-Gaussian errors

KamLAND Collaboration, 2011

An approach from the first principles: Using effective field theory for low-energy neutrino-deuteron scattering Butler, Chen

Below the pion threshold ${}^3S_1 \rightarrow {}^1S_0$ transition dominates and one only needs the coefficient of the two-body counter term, L_{1A} (isovector two-body axial current)

 L_{1A} can be obtained by comparing the cross section $\sigma(E) = \sigma_0(E) + L_{1A} \sigma_1(E)$ with cross-section calculated using other approaches or measured experimentally. (e.g. use solar neutrinos as a $\frac{1}{2}$
source) source)

Difficult to go beyond two-body systems!

A.B. Balantekin and H. Yuksel

CP-violation

$$
P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) - P(\nu_{\mu} \rightarrow \nu_{e}) \propto \sin \theta_{12} \sin \theta_{13} \sin \theta_{23}
$$

Since we know the other mixing angles are non-zero, observation of CP-violation in neutrino oscillations hinges on a non-zero value of θ_{13} .

Reactor (Anti)neutrino Experiments

Measuring θ_{13} with Reactor Antineutrinos

$$
P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)
$$

- ! too low to produce muons. Hence • Reactor neutrino energies are this is an antineutrino disappearance experiment (also no matter effects).
- $~1.01.8$ • Measure ratio(s) of interaction rates in two or more detectors to cancel systematic errors.
	- Those detectors will never be identical, hence one should try to control mass differences, detection efficiencies, etc.

From K. Heeger

$$
\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]
$$
\nRatio of detector masses

\nBefore the difference of the effective effects of the effective energy

\nSince L is the same as L is the same as L and L

Double-Chooz 90% C.L. Limit versus year

6

$F_{ar} + Near 1.5 year later$
Near only - - - -
Near and Far simultaneously 0.18 0.16 $sin^2(2\theta_{13})$ limit 0.14 0.12 0.1 0.08 0.06 0.04 0.02 $\mathbf 0$ $\overline{2}$ $\mathbf{3}$ 5 $\pmb{0}$ $\overline{4}$ $\mathbf{1}$ Exposure time in years

 0.2

Double Chooz

Highlights of recent progress

- DOE CD-3B approval on Aug. 6, 2008.
- Civil construction started blasting on Feb. 19, 2008.

•Daya Bay Ground Breaking Ceremony (Oct. 13, 2007).

Antineutrino Detector

First Detector Filled May 8, 2011

Antineutrino Detector Test

Transport

75

Daya Bay - Site Layout

Far Site 1615 m from Ling Ao 1985 m from Daya Overburden: 355 m

> **Mid Site T**~1000 m from Daya Overburden: 208 m

> > **290 m**

०
१०

m

7<u>ლ</u> **0m**

> **Daya Bay Near** 363 m from Daya Bay Overburden: 98 m

230 m

570 ^m

Daya Bay

Ling Ao Near 481 m from Ling Ao Overburden: 112 m

> **Ling Ao ll** (under construction)

 $^{\circ}$

Ling Ao

Long-baseline oscillations at GeV energies

Matter effects in long-baseline oscillations

Example: two flavors and normal hierarchy

 $P(v_{\mu} \rightarrow v_{e})$ = Sin² 2 θ [1 + (4√2G_FN_eE/ δ m²) Cos2 θ] $x \sin^2[(\delta m^2/4E + ...)L]$ _

$$
P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) = \sin^2 2\theta \left[1 - (4\sqrt{2}G_F N_e E/\delta m^2) \cos 2\theta \right] \times \sin^2[(\delta m^2/4E+..)L]
$$

This can be used to distinguish normal from inverted hierarchy

Matter effects mimic CP-violation!

Matter effects increase with energy, $E_{MSW} \sim 10$ GeV for Earth's mantle

Is there any reason to believe that CP-violating phase in the neutrino mixing matrix is observable? Is there an analog of the MSW effect: does the dense matter (such as in a core-collapse supernova) amplify or suppress the effects of δ?

Evolution Equation

$$
i\frac{\partial}{\partial t}\begin{pmatrix} \Psi_e \\ \Psi_\mu \\ \Psi_\tau \end{pmatrix} = \begin{cases} \mathbf{T}_{23}\mathbf{T}_{13}\mathbf{T}_{12} \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} \mathbf{T}_{12}^\dagger \mathbf{T}_{13}^\dagger \mathbf{T}_{23}^\dagger \\ + \begin{pmatrix} V_{e\mu} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{\tau\mu} \end{pmatrix} \begin{pmatrix} \Psi_e \\ \Psi_\mu \\ \Psi_\tau \end{pmatrix}
$$

Evolution Equation in Rotated Basis

$$
\tilde{\Psi}_{\mu} = \cos \theta_{23} \Psi_{\mu} - \sin \theta_{23} \Psi_{\tau}
$$

$$
\tilde{\Psi}_{\tau} = \sin \theta_{23} \Psi_{\mu} + \cos \theta_{23} \Psi_{\tau}
$$

$$
i\frac{\partial}{\partial t}\begin{pmatrix} \Psi_e \\ \tilde{\Psi}_{\mu} \\ \tilde{\Psi}_{\tau} \end{pmatrix} = \begin{Bmatrix} \mathbf{T}_{13}\mathbf{T}_{12} \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} \mathbf{T}_{12}^{\dagger}\mathbf{T}_{13}^{\dagger} \\ + \begin{pmatrix} V_{e\mu} & 0 & 0 \\ 0 & S_{23}^2 V_{\tau\mu} & -C_{23}S_{23}V_{\tau\mu} \\ 0 & -C_{23}S_{23}V_{\tau\mu} & C_{23}^2 V_{\tau\mu} \end{pmatrix} \end{Bmatrix} \begin{pmatrix} \Psi_e \\ \tilde{\Psi}_{\mu} \\ \tilde{\Psi}_{\tau} \end{pmatrix}
$$

"Hamiltonian" in the Rotated Basis

We define

$$
\tilde{H} = \mathbf{T}_{13} \mathbf{T}_{12} \begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} \mathbf{T}_{12}^{\dagger} \mathbf{T}_{13}^{\dagger} + \begin{pmatrix} V_{e\mu} & 0 & 0 \\ 0 & S_{23}^2 V_{\tau\mu} & -C_{23} S_{23} V_{\tau\mu} \\ 0 & -C_{23} S_{23} V_{\tau\mu} & C_{23}^2 V_{\tau\mu} \end{pmatrix}
$$

μ - τ Symmetry

If we can neglect the potential $V_{\tau\mu}$ we can write

$$
\tilde{H} = \mathbf{T}_{13} \mathbf{T}_{12} \left(\begin{array}{ccc} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{array} \right) \mathbf{T}_{12}^{\dagger} \mathbf{T}_{13}^{\dagger} + \left(\begin{array}{ccc} V_{e\mu} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)
$$

It is straightforward to show that

$$
\tilde{\mathsf{H}}(\delta) = \mathsf{S}\tilde{\mathsf{H}}(\delta=0)\mathsf{S}^\dagger
$$

with

$$
\textbf{S} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{array} \right)
$$

Neutrino Evolution Equations

We need to solve

$$
i\frac{d\mathbf{U}}{dt} = \tilde{H}\mathbf{U}, \text{ with } \mathbf{U}(t=0) = 1.
$$

It is easy to show that

$$
\tilde{H}(\delta) = \mathbf{S}\tilde{H}(\delta = 0)\mathbf{S}^{\dagger} \Leftrightarrow \mathbf{U}(\delta) = \mathbf{S}\mathbf{U}(\delta = 0)\mathbf{S}^{\dagger}.
$$

Survival Amplitude Relations

Define the amplitude for the process $\nu_x \rightarrow \nu_y$ to be

These considerations give us interesting sum rules:

• Electron neutrino survival probability, P ($\rm v_e\!\rightarrow v_e$) is independent of the value of the CP-violating phase, δ; or equivalently

• The combination P $(v_\mu \rightarrow v_e)$ + P $(v_\tau \rightarrow v_e)$ at a fixed energy is also independent of the value of the CPviolating phase. Balantekin, Gava, Volpe

• It is possible to derive similar sum rules for other amplitudes. Kneller, McLaughlin

Matter Potentials including Loop Corrections

$$
V_{e\mu} = 2\sqrt{2} G_F N_e \left\{ 1 + \mathcal{O}\left(\alpha \frac{m_\mu}{m_W}^2\right) \right\}
$$

$$
V_{\tau\mu} = -\frac{3\sqrt{2} G_F \alpha}{\pi \sin^2 \theta_W} \left(\frac{m_\tau}{m_W}\right)^2 \left\{ (N_p + N_n) \log \frac{m_\tau}{m_W} + \left(\frac{N_p}{2} + \frac{N_n}{3}\right) \right\}
$$

Probably too small in most cases!

Typical Appearance Experiment

$$
P_{\nu_{\mu}\rightarrow\nu_{e}} \sim \frac{\sin^{2}2\theta_{13}\sin^{2}\theta_{23}}{(1-2\sqrt{2}G_{F}N_{e}E/\delta m^{2})^{2}}\sin^{2}\left[\left(\frac{\delta m_{31}^{2}}{4E}-\frac{G_{F}N_{e}}{\sqrt{2}}\right)L\right]
$$

$$
+ \mathcal{O}(g)
$$

$$
g=\frac{\delta m_{21}^2}{\delta m_{31}^2}\sim 0.03
$$

Typical Appearance Experiment

$$
P_{\nu_{\mu}\rightarrow\nu_{e}} \sim \frac{\sin^{2}2\theta_{13}\sin^{2}\theta_{23}}{(1-2\sqrt{2}G_{F}N_{e}E/\delta m^{2})^{2}}\sin^{2}\left[\left(\frac{\delta m_{31}^{2}}{4E}-\frac{G_{F}N_{e}}{\sqrt{2}}\right)L\right]
$$

- $g\frac{\sin 2\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}}{(1/2-2\sqrt{2}G_{F}N_{e}E/\delta m_{31}^{2})-1/4}\cos\left(\delta+\frac{\delta m_{31}^{2}L}{4E}\right)$
 $\times \cos\left(\frac{\delta m_{31}^{2}L}{4E}\right)\sin\left(\frac{G_{F}N_{e}L}{\sqrt{2}}\right)\sin\left[\left(\frac{\delta m_{31}^{2}}{4E}-\frac{G_{F}N_{e}}{\sqrt{2}}\right)L\right]$
+ $\mathcal{O}(g^{2})$

$$
g=\frac{\delta m_{21}^2}{\delta m_{31}^2}\sim 0.03
$$

Typical Appearance Experiment

$$
P_{\nu_{\mu}\to\nu_{e}} \sim \frac{\sin^{2} 2\theta_{13} \sin^{2} \theta_{23}}{(1 - 2\sqrt{2}G_{F}N_{e}E/\delta m^{2})^{2}} \sin^{2}\left[\left(\frac{\delta m_{31}^{2}}{4E} - \frac{G_{F}N_{e}}{\sqrt{2}}\right)L\right]
$$

- $g \frac{\sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}}{(1/2 - 2\sqrt{2}G_{F}N_{e}E/\delta m_{31}^{2}) - 1/4} \cos\left(\delta + \frac{\delta m_{31}^{2}L}{4E}\right)$
 $\times \cos\left(\frac{\delta m_{31}^{2}L}{4E}\right) \sin\left(\frac{G_{F}N_{e}L}{\sqrt{2}}\right) \sin\left[\left(\frac{\delta m_{31}^{2}}{4E} - \frac{G_{F}N_{e}}{\sqrt{2}}\right)L\right]$
+ $\mathcal{O}(g^{2})$
Is equal to
zero for
the magic baseline
1.5.

Reactor and long-baseline neutrino experiments aim to answer a long list of physics questions:

- The value of θ_{13} .
- Mass hierarchy.
- Deviations from maximal θ_{23} (*i.e.* deviations from the peculiar v_{μ} - v_{τ} symmetry).
- Testing the unitarity of the neutrino mixing matrix (i.e. sterile neutrinos).
- \cdot The value of the CP-violating phase, δ .
- Possible new physics, non-standard interactions, etc.

After the ongoing reactor experiments the next step is an experiment with L/E sensitive to atmospheric δm^2 (L/E ~ 500 km/GeV)!