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Motivation

Supernova neutrinos

Mprogenitor ≥ 8M� ⇒
∆E ∼ 1059 MeV

99 % of this energy is
carried away by neutrinos
and antineutrinos with
10 ≤ Eν ≤ 30 MeV
⇒ 1058 neutrinos!
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Neutrino Mixing

Mass and Flavor States

a1(p, s) = cos θ ae(p, s)− sin θ ax(p, s)

a2(p, s) = sin θ ae(p, s) + cos θ ax(p, s)

Flavor Isospin Operators

Ĵ+
p,s = a†e(p, s)ax(p, s) , Ĵ−p,s = a†x(p, s)ae(p, s) ,

Ĵ0
p,s =

1

2

(
a†e(p, s)ae(p, s)− a†x(p, s)ax(p, s)

)
[Ĵ+

p,s , Ĵ
−
q,r ] = 2δpqδsr Ĵ

0
p,s , [Ĵ0

p,s , Ĵ
±
q,r ] = ±δpqδsr Ĵ

±
p,s ,
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Neutrino Hamiltonian

Vacuum Oscillation Term

Ĥν =
∑
p,s

(
m2

1

2p
a†1(p, s)a1(p, s) +

m2
2

2p
a†2(p, s)a2(p, s)

)
.

Ĥν =
∑
p

δm2

2p
B̂ · ~Jp

B̂ = (sin 2θ, 0,− cos 2θ)

Neutrino-Neutrino Interactions

Ĥtotal =
∑
p

δm2

2p
B̂ · ~Jp +

√
2GF

V

∑
p,q

(1− cosϑpq)~Jp · ~Jq
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Neutrino Hamiltonian

Neutrino Hamiltonian with ν − ν interactions

Ĥtotal =
∑
p

δm2

2p
B̂ · ~Jp +

√
2GF

V

∑
p,q

(1− cosϑpq)~Jp · ~Jq

Single-angle approximation ⇒

Ĥtotal =
∑
p

δm2

2p
B̂ · ~Jp +

√
2GF

V
~J · ~J

Defining µ =
√

2GF
V , τ = µt, and ωp = 1

µ
δm2

2p one can write

Ĥ =
∑
p

ωpB̂ · ~Jp + ~J · ~J
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Conserved Quantities

Some Invariants

Ĥ =
∑
p

ωpB̂ · ~Jp + ~J · ~J

This Hamiltonian preserves the length of each spin

L̂p = ~Jp · ~Jp ,
[
Ĥ, L̂p

]
= 0 ,

as well as the total spin component in the direction of the
”external magnetic field”, B̂

Ĉ0 = B̂ · ~J ,
[
Ĥ, Ĉ0

]
= 0
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BCS Hamiltonian

Hamiltonian in Quasi-spin basis

ĤBCS =
∑
k

2εk t̂0
k − |G |T̂ +T̂ .

Quasi-spin operators:

t̂+
k = c†k↑c

†
k↓, t̂−k = ck↓ck↑, t̂0

k =
1

2

(
c†k↑ck↑ + c†k↓ck↓ − 1

)
[t̂+

k , t̂
−
l ] = 2δkl t̂

0
k , [t̂0

k , t̂
±
l ] = ±δkl t̂±k .

Richardson gave a solution of this problem. Hence there exist
invariants of motion.
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Invariants

Invariants

The collective neutrino Hamiltonian given has the following
constants of motion:

ĥp = B̂ · ~Jp + 2
∑

q(6=p)

~Jp · ~Jq

ωp − ωq
.

The individual neutrino spin-length discussed before in an
independent invariant. However Ĉ0 =

∑
p ĥp. The Hamiltonian

itself is also a linear combination of these invariants.

Ĥ =
∑
p

wpĥp +
∑
p

L̂p .
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Eigenvalues and Eigenstates

Eigenstates of the system

Jmax = N/2 N, the total number of neutrinos

A state with all electron neutrinos:
|νe νe νe . . . 〉 = |Jmax Jmax〉f
Matter and flavor bases are connected with a unitary
transformation: |Jmax Jmax〉f = Û†|Jmax Jmax〉m
|Jmax Jmax〉m =

∏
p,s a†1(p, s) |0〉

|Jmax − Jmax〉m =
∏

p,s a†2(p, s) |0〉
E(+Jmax) = −

∑
p

np

2 ωp + Jmax (Jmax + 1)

E(−Jmax) =
∑

p
np

2 ωp + Jmax (Jmax + 1)
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Eigenvalues and Eigenstates

Other states

Q±(ξ) ==
∑
p

1

ωp − ξ

(
cos2 θĴ±p + sin 2θĴ0

p − sin2 θĴ∓p

)

ĤQ+(ξ)|J − J〉m =
(
E(−J) − 2J − ξ

)
Q+(ξ)|J − J〉m

+

(
1 + 2

∑
p

−jp
wp − ξ

)
Q+|J − J〉m︸ ︷︷ ︸

should be zero if eigenstate

This gives us the Bethe ansatz equation ⇒
∑

p
−jp

wp−ξ = −1
2
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Eigenvalues and Eigenstates

Most General Eigenstate

|ξ1, ξ2, . . . ξκ〉 ≡ Q+(ξ1)Q+(ξ2) . . .Q+(ξκ)|J − J〉m

E (ξ1, ξ2, . . . , ξκ) = E(−J) −
κ∑

α=1

ξα − κ(2J − κ+ 1) ,

∑
p

−jp
ωp − ξα

= −1

2
+

κ∑
β=1

(β 6=α)

1

ξα − ξβ
.

︸ ︷︷ ︸
Bethe ansatz equations
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An RPA-like approximation

An RPA-inspired approximation when [Ô1, Ô2] = 0. Approximate
the operator product as

Ô1Ô2 ∼ Ô1〈Ô2〉+ 〈Ô1〉Ô2 − 〈Ô1〉〈Ô2〉 ,

where the expectation values should be calculated with respect to
a state |Ψ〉 which satisfies the condition 〈Ô1Ô2〉 = 〈Ô1〉〈Ô2〉 .

Ĥ ∼ ĤRPA =
∑
p

ωpB̂ · ~Jp + ~P · ~J

Polarization vector: ~Pp,s = 2〈~Jp,s〉. Use SU(2) coherent states for
the expectation value.
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Mean-neutrino field

Polarization vectors

Ĥ ∼ ĤRPA =
∑
p

ωpB̂ · ~Jp + ~P · ~J

~Pp,s = 2〈~Jp,s〉

Eqs. of motion:
d

dτ
~Jp = −i [~Jp, Ĥ

RPA] = (ωpB̂ + ~P)× ~Jp

RPA Consistency requirement⇒ d

dτ
~Pp = (ωpB̂ + ~P)× ~Pp

Invariants Ip = 2〈ĥp〉 = B̂ · ~Pp +
∑

q( 6=p)

~Pp · ~Pq

ωp − ωq
⇒ d

dτ
Ip = 0
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Total Hamiltonian

Hamiltonian with both ν’s and ν̄’s

Ĥtotal =
∑
p

δm2

2p

(
− cos 2θ Ĵ0

p + sin 2θ
Ĵ+
p + Ĵ−p

2

)

+
∑
p̄

δm2

2p̄

(
cos 2θ ˆ̄J0

p̄ + sin 2θ
ˆ̄J+
p̄ + ˆ̄J−p̄

2

)

+

√
2GF

V

∑
p,q

(1− cosϑpq)~Jp · ~Jq +
∑
p̄,q̄

(1− cosϑp̄q̄)~̄Jp̄ · ~̄Jq̄

+
∑
p,q̄

(1− cosϑpq̄)
(

2Ĵ0
p

ˆ̄J0
q̄ − Ĵ+

p
ˆ̄J−q̄ − Ĵ−p

ˆ̄J+
q̄

) .

A.B. Balantekin Institute for Nuclear Theory in collaboration with Y.Pehlivan, T. Kajino, and T. YoshidaSimilarities between Collective Neutrino Oscillations and the Nuclear Pairing Problem



Collective Neutrino Oscillations
Nuclear Pairing Problem

Features of the Collective Neutrino Hamiltonian
Conclusions

Invariants of the Collective Neutrino Oscillations
Eigenvalues and Eigenstates of Collective Neutrino Hamiltonian
Mean field - RPA approaches
Including antineutrinos

Including antineutrinos

Single angle approximation

Htotal =
∑
p

δm2

2p
B̂ ·~Jp −

∑
p̄

δm2

2p̄
B̂ · ~̃Jp +

√
2GF

V

(
~J + ~̃J

)
·
(
~J + ~̃J

)
Defining ωp̄ = − 1

µ
δm2

2p̄ , one writes

H =
∑
p

ωpB̂ · ~Jp +
∑
p̄

ωp̄B̂ · ~̃Jp +
(
~J + ~̃J

)
·
(
~J + ~̃J

)
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Examples of mean-field calculations

With ν luminosity L51 =
0.001 (blue), 0.1 (green),
50 (red)

Balantekin and Yüksel,
New J. Phys. 7 51
(2005).
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Examples of mean-field calculations

Fuller, Qian, Carlson, Duan,...
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Invariants

Invariants

Conserved quantities for each neutrino energy mode p:

ĥp = B̂ · ~Jp + 2
∑

q( 6=p)

~Jp · ~Jq

ωp − ωq
+ 2

∑
q̄

~Jp · ~̃Jq̄

ωp − ωq̄

Conserved quantity ĥp̄ for each antineutrino energy mode:

ĥp̄ = B̂ · ~̃Jp + 2
∑

q̄(6=p̄)

~̃Jp̄ · ~̃Jq̄

ωp̄ − ωq̄
+ 2

∑
q

~̃Jp̄ · ~Jq

ωp̄ − ωq
.
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Invariants

Mean-field Invariants

Ip = 2〈ĥp〉 = B̂ · ~Pp +
∑

q(6=p)

~Pp · ~Pq

ωp − ωq
+
∑
q̄

~Pp · ~̃Pq̄

ωp − ωq̄

Ip̄ = 2〈ĥp̄〉 = B̂ · ~̃Pp̄ +
∑

q̄(6=p̄)

~̃Pp̄ · ~̃Pq̄

ωp̄ − ωq̄
+
∑
q

~̃Pp̄ · ~Pq

ωp̄ − ωq
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Conclusions

Conclusions

We examined the many-neutrino gas both from the exact
many-body perspective and from the point of view of an
effective one-body description formulated with the application
of the RPA method. In the limit of the single angle
approximation, both the many-body and the RPA pictures
possess many constants of motion manifesting the existence
of associated dynamical symmetries in the system.

The existence of constants of motion offer practical ways of
extracting information even from exceedingly complex
systems. Even when the symmetries which guarantee their
existence is broken, they usually provide a convenient set of
variables which behave in a relatively simple manner
depending on how drastic the symmetry breaking factor is.
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Conclusions - continued

The existence of such invariants naturally lead to associated
collective modes in neutrino oscillations. However, symmetries
alone do not guarantee the stability of such collective
behavior. An extensive numerical study of the collective
neutrino phenomena associated with our invariants would
shed light on the question of stability.
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