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Box 2 |Creating controlled disordered potentials

In atomic gases, disorder can be created in a controlled way. For
instance, the so-called speckle potentials are formed as follows107.
A coherent laser beam is diffracted through a ground-glass plate
and focused by a converging lens (Fig. B2a). The ground-glass
plate transmits the laser light without altering the intensity, but
imprints a random phase profile on the emerging light. Then,
the complex electric field E(r) on the focal plane results from the
coherent superposition of many independent waves with equally
distributed random phases, and is thus a Gaussian random pro-
cess. In such a light field, atoms with a resonance slightly detuned
with respect to the laser light experience a disordered potential
V (r), which, up to a shift introduced to ensure that the statistical
average 〈V 〉 ofV (r) vanishes, is proportional to the light intensity,
V (r) ∝ ±(|E(r)|2 − 〈|E|2〉), an example of which is shown in
Fig. B2b.Hence, the laws of optics enable us to precisely determine
all statistical properties of speckle potentials. First, although the
electric field E(r) is a complex Gaussian random process, the
disordered potential V (r) is not Gaussian itself, and its single-
point probability distribution is a truncated, exponential decaying
function, P(V (r)) = e−1|VR|−1 exp(−V (r)/VR)Θ(V (r)/VR + 1),
where

√〈V 2〉 = |VR| is the disorder amplitude and Θ is the
Heaviside function. Both the modulus and sign of VR can be
controlled experimentally30: the modulus is proportional to the
incident laser intensity whereas the sign is determined by the
detuning of the laser relative to the atomic resonance (VR is
positive for ‘blue-detuned’ laser light30,36,39,41, and negative for

‘red-detuned’ laser light35,37,40). Second, the two-point correlation
function of the disordered potential, C2(r) = 〈V (r)V (0)〉, is
determined by the overall shape of the ground-glass plate but
not by the details of its asperities107. It is thus also controllable
experimentally30. There is however a fundamental constraint: as
speckle potentials result from interference between light waves of
wavelength λL coming from a finite-size aperture of angular width
2α (Fig. B2a), they do not contain Fourier components beyond a
value 2kC, where kC = (2π/λL)sin(α). In other words, C2(2k)= 0
for |k| > kC.

Speckle potentials can be used directly to investigate the
transport of matter waves in disordered potentials35–38. They can
also be superimposed on deep optical lattices83. In the latter case,
the physics is described by Box 1 Hamiltonian (3) with Vσ ,j a
random variable whose statistical properties are determined by
those of the speckle potential. In particular,Vσ ,j is non-symmetric
and correlated from site to site. Yet another possibility to create
disorder in deep optical lattices is to superimpose a shallow
optical lattice with an incommensurate period38,42,82. In this case,
Vσ ,j = $cos(2πβj + φ), where $ and φ are determined by the
amplitude and the phase of the second lattice and β = k2/k1 is the
(generally irrational) ratio of the wavevectors of the two lattices.
Although the quantity Vσ ,j is deterministic, it mimics disorder in
finite-size systems32,33,84,85. In contrast to speckle potentials, these
bichromatic lattices form a pseudorandom potential, which is
bounded (|Vσ ,j | ! $) and symmetrically distributed.
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Figure B2 |Optical speckle potentials. a, Optical configuration. b, Two-dimensional representation of a speckle potential.

in free space. Hence Lloc explodes exponentially for k > 1/lB,
inducing a crossover from extended to localized states in finite-size
systems. The situation is dramatically different in three dimensions,
where a proper phase transition (the Anderson transition) occurs
at the so-called mobility edge kmob: although low-energy states
with k < kmob are exponentially localized, those with k > kmob are
extended. The exact features of the mobility edge are unknown,
but approximately captured by the Ioffe–Regel criterion58,59, which
basically states that localization requires that the phase accumulated
between two successive deflecting scattering processes is less than
2π. In other words, the de Broglie wavelength must exceed the
memory of the initial particle direction, thus yielding kmob ∼1/lB.

Anderson localization of matter waves
Observing AL of matter waves requires meeting several challenging
conditions. First, we must use weak enough disorder that interfer-
ence effects at the origin of AL dominate over classical trapping
in potential minima. Second, we must eliminate all perturbations
such as time-dependent fluctuations of themedium, or interparticle

interactions. Finally, wemust demonstrate exponential localization,
not only suppression of transport, as this can also arise from
classical trapping. Although these conditions are very demanding
in condensed-matter physics, they can be accurately fulfilled with
ultracold atoms, using (1) controlled disorder, (2) negligible inter-
actions, (3) strong isolation from the environment and (4) direct
imaging of atomic density profiles. This way, direct signatures of
AL of non-interacting matter waves were reported in refs 41, 42. As
we shall see, these two experiments are complementary rather than
similar, because they significantly differ as regards both observation
scheme and class of disorder.

In ref. 41, a weakly interacting BEC is created in a trap, which is
abruptly switched off at time t = 0. Then, the condensate expands
in a guide and in the presence of disorder (Fig. 1a), created with
optical speckle (Box 2). This physics is captured by the Gross–
Pitaevskii equation

ih̄
∂ψ

∂t
= − h̄2∇2

2m
ψ +V (r)ψ +g |ψ |2ψ (4)

NATURE PHYSICS | VOL 6 | FEBRUARY 2010 | www.nature.com/naturephysics 89

PROGRESS ARTICLE NATURE PHYSICS DOI: 10.1038/NPHYS1507

1

2

α

50–50 0

O
pt

ic
al

 d
en

si
ty

(a
rb

itr
ar

y 
un

its
)

b

a

1

10

100

1,0002.5

2.0

1.5

1.0

0.5

806040200
VR (Hz)

L l
oc

 (
m

m
)

0

z (mm)–0
.8 0.8

–0
.4 0.40

Position (µm)

1 10 100
∆/J

Figure 1 | Experimental observation of Anderson localization of matter
waves with Bose–Einstein condensates. a, Experiment of Institut
d’Optique (courtesy of V. Josse and P. Bouyer): an interacting BEC expands
in a tight one-dimensional guide (in red) in the presence of a speckle
potential (in blue). The expansion stops in less than 500ms and the density
profile of the condensate is directly imaged (shown in orange–green; from
the data of ref. 41). The column density, plotted in semilogarithmic scale in
the inset, shows a clear exponential decay characteristic of Anderson
localization. The localization length Lloc, extracted by fitting an exponential
exp(−2|z|/Lloc) to the experimental profiles, shows a good agreement with
theoretical calculations34. b, Experiment of LENS (adapted from ref. 42
with permission of the authors): a non-interacting BEC is created in a
combination of a harmonic trap and a one-dimensional bichromatic lattice.
The plot shows the exponent α of a fit of a function exp(−|(x−x0)/l|α) to
the tails of the condensate at equilibrium in the combined potential, versus
the ratio of the disorder strength (") to the site-to-site tunnelling rate (J).
The onset of localization corresponds to the crossover to α → 1 for "/J>9.
The inset shows a plot of the density profile of the condensate together
with the fit for "/J= 15. Error bars in a inset and b correspond to 95%
confidence intervals for the fitted values (±2 s.e.m.).

which corresponds to Hamiltonian (2) in the mean-field regime.
The dynamics of the BEC can be understood in a two-stage
scheme34. In the first stage, it is dominated by interactions and the
BEC expands, creating a coherent wavefunction with a stationary
momentum distribution, D(k) ∝ 1− (kξ)2, where ξ = h̄/

√
4mµ

is the initial healing length, which measures the initial interaction
strength13, and µ is the initial chemical potential of the BEC. In the
second stage, once the expansion has strongly lowered the atomic
density |ψ(z)|2, the interaction term vanishes and we are left with a
superposition of (almost) non-interacting wavesψk ; the population
of each isD(k). Then eachψk eventually localizes by interactingwith
the disordered potential, so that ln(|ψk(z)|)∼ |z |/Lloc(k), and the
total BEC density reduces to34 nBEC(z)&

∫
dk D(k)〈|ψk(z)|2〉. Direct

imaging of the localized matter wave reveals exponentially decaying

tails41, with a localization length equal to that of a non-interacting
particle with momentum k = 1/ξ (inset of Fig. 1a). Hence, this
experiment corresponds to a ‘transport scheme’, which probes AL
of non-interacting particles with a wavevector controlled by the
initial interaction, through the healing length ξ .

In contrast, the experiment of ref. 42 uses a ‘static scheme’. The
interactions are switched off already in the trap using Feshbach
resonances, so that the gas is created in a superposition of a few
(typically one to three) low-energy, single-particle eigenstates. They
are subsequently imaged in situ, revealing exponentially decaying
tails (inset of Fig. 1b). It is worth noting that ref. 42 uses a
one-dimensional quasiperiodic, incommensurate lattice (Box 2),
thus realizing the celebrated Aubry–Andrémodel60,61

Ĥ = −
∑

〈j,l〉
J
(
â†
j âl +h.c.

)
+

∑

j

"cos(2πβj+φ)â†
j âj (5)

that is, Box 1 equation (3) with U = 0, Vj = "cos(2πβj+φ), and
β an irrational number. Different from the case of truly disordered
potentials, there is a metal–insulator transition (mobility edge) in
one dimension, which is theoretically expected at "/J = 2 and
experimentally observed as a crossover from Gaussian (α & 2) to
exponential (α & 1) tails (Fig. 1b).

These works open new horizons to further deepen our
knowledge of AL in various directions. In one dimension, although
all states are localized, subtle effects arise in correlated disorder,
for instance in speckle potentials34. To lowest order in the
disorder amplitude, VR = √〈V (z)2〉, the Lyapunov exponent,
γ (k) = 1/Lloc(k), can be calculated analytically62, and we find
γ (k) ∝ 〈V (2k)V (−2k)〉/k2, reflecting in particular the role of
coherent second-order back-scattering, +k → −k → +k, in the
localization process. As the power spectrum of speckle potentials
has a cut-off kC, such that C2(2k) = 〈V (2k)V (−2k)〉 = 0 for
k > kC (Box 2), we find an abrupt change (effective mobility
edge) in the k-dependence of γ for weak disorder63,64: although
γ (k)∼ V 2

R for k < kC, higher-order scattering processes dominate
for k > kC and γ (k)∼V 4

R .
In dimensions higher than one, the self-consistent theory of

localization65 enables us to calculate Lloc and shows a mobility
edge in three dimensions. It is however known that it is not fully
exact owing to uncontrolled approximations, which in particular
ignore large fluctuations near the Anderson transition. Therefore,
a major challenge for disordered, ultracold atoms is to extend the
works of refs 41, 42 to two66,67 and three68 dimensions. Observing
the three-dimensional mobility edge would be a landmark result,
which might stimulate further theoretical developments and drive
new approaches by providing precise measurements of the mobility
edge kmob. Even more important would be the determination
of the critical exponent ν, such that Lloc ∼ (Emob − E)−ν for
E ! Emob, which is debated68.

Interactions versus Anderson localization
Another outstanding challenge is to understand how interactions
affect localization, a question that has proved puzzling ever since AL
was introduced69. It might be believed that even weak interactions
destroy localization. Different approaches however provide appar-
ently contradicting answers in different transport schemes. For in-
stance, recent numerical calculations70 suggest that, for expanding
BECs, repulsive interactions destroy AL beyond a given threshold.
Conversely, other results71 predict that localization should persist
even in the presence of interactions. Finally, in transmission ex-
periments (which amount to releasing a monokinetic wavepacket
to a disordered region and measuring transmission), perturbative
calculations and numerical results indicate that repulsive interac-
tions decrease the localization length before completely destroying
localization72. As a nonlinear term is naturally present in BECs
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Interactions among atoms 
In a cold dilute atomic gas, atoms predominantly interact
with each other through short-range van der Waals forces
that can be described in terms of elastic s-wave collisions.
Control over those collisions can be an interesting tool to in-
vestigate localization phenomena. In its original sense, AL is
indeed a single-particle phenomenon, which demands the
lack of interactions between the particles; repulsive interac-
tions between the atoms can hamper localization. 

The potassium-39 BEC is among those for which the
strength of the collisions between the ultra-
cold atoms can be conveniently tuned by
using a static magnetic field.14 The phenom-
enon, known as a Feshbach resonance, has
led to many striking advances in cold
atomic physics (see Daniel Kleppner’s Ref-
erence Frame in PHYSICS TODAY, August
2004, page 12). Potassium-39 has a conven-
ient resonance of that kind, which has been
used to bring the strength of collisions be-
tween the BEC atoms to essentially zero.
One can then look for localization induced
entirely by disorder, with an ensemble of
hundreds of thousands of noninteracting
particles all occupying the same quantum
state. It was possible to somewhat re-create
the physical situation that Anderson consid-
ered in his article: putting one particle in a
lattice site (or more precisely, 105 clones of
the same particle initially occupying few
sites) and studying the evolution in time.
Figure 4b shows evidence of reduced ex-
pansion and exponential localization above

a certain amount of disorder. The transition to complete
freezing of the atomic motion occurs at a critical value of
W/J ≈ 1, no matter what tunneling time is used in the exper-
iment, as predicted by Aubry and André.15

Observations at LENS have not been limited to trans-
port phenomena. The localization transition was also stud-
ied by directly imaging the momentum distribution of the
atoms as they passed from extended to localized states. If the
optical lattices are suddenly switched off, the BEC wave-
function starts evolving in free space, and after a long

Extended state

ψ x( )

ψ p( )

Localized state

Figure 5. Imaging the phase transition in momentum space.When the atomic
wavefunction is extended all over the bichromatic lattice, narrow peaks are
recorded in the momentum distribution. When the atomic wavefunction is local-
ized, a broad momentum spread is observed, as expected from the uncertainty
principle. The false-color images in the bottom row are experimental maps of the
momentum distribution recorded after a time-of-flight expansion in free space.
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Figure 4. A bichromatic lattice simulates solid-state model.Loaded in a laser standing wave, an ultracold atom (blue) experiences a
periodic potential. (a) The tunneling energy J can be controlled by changing the intensity of the main standing wave. A second, weaker
optical lattice with an incommensurate spacing breaks the translational invariance and scrambles the site energies, as in the original
solid-state model introduced by Philip Anderson. (b) Time-resolved images of almost noninteracting potassium-39 atoms. The atoms
are first loaded into a few central sites of the bichromatic lattice and then observed diffusing into that nonperiodic structure. An in-
crease in disorder leads to a decrease in diffusion and eventually its absence when the amount of disorder W becomes on the order of J.
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FIG. 4: Characteristic in situ polarization phase-contrast im-
ages of the data shown in Fig. 2 at various times. The images
are nearly equally spaced in time between the time labels.

accompanied by an exponential decrease of 〈dE/dt〉, sim-
ilar to our experimental observations. In contrast to a
single impurity in a uniform condensate, a defect is al-
ways present in a low density region of a condensate in
a disordered harmonic trap. Consequently, v0 is always
greater than the local speed of sound at the edge of the
condensate and excitations are always present. Previous
experimental [32, 34, 41] and numerical [42] studies of the
damping of collective modes and the damping of Bloch
oscillations in a disordered lattice potential [43, 44] have
found qualitatively similar results.
Figure 4 shows in situ polarization phase-contrast im-

ages [45] of the BEC at various times in the oscillation
shown in Fig. 2. The damping clearly does not result
from a loss of collectivity as predicted by 1D NLSE nu-
merical simulations [42]. Rather, the BEC nearly main-
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FIG. 5: Generation of a non-condensed component.
(a) Squares show the center of the Thomas-Fermi (condensed)
component and circles show the center of the Gaussian (non-
condensed) component. The Gaussian center trails behind
the Thomas-Fermi center and has a lower amplitude of oscil-
lation. Within experimental uncertainty, ωz = (2π) 5.1(2) Hz
for both components. For this data, a = 200 a0, N = 3× 105 ,
µ/h = 1.8 kHz, VD/µ = 0.22, v0 = 28mm/s, c0 = 7.2mm/s,
and ωr = (2π) 220Hz. (b–d) Axial density distributions with
bimodal fits (solid lines) and a single component Thomas-
Fermi fit (dashed lines) at various times during the oscilla-
tion: (b) 28ms, (c) 100ms, (d) 190ms. The condensates in
(b) and (d) are traveling in the positive direction whereas the
condensate in (c) is traveling in the negative direction.

tains its original shape throughout the oscillation. Close
inspection of the density distributions in Fig. 4 reveals
a “tail” of non-condensed atoms that appears to oscil-
late slightly out-of-phase with the central Thomas-Fermi
distribution. At early times, these non-condensed atoms
appear to lag behind the BEC, while at later times they
oscillate in-phase with it. This two-component out-of-
phase oscillation is reminiscent of the second sound-like
oscillation reported in Ref. [46]. In that work, the initial
temperature was high enough that damping occurred due
to the interaction between a BEC and a thermal compo-
nent. In contrast to those results, we observe that the
dipole oscillation is undamped in the absence of the dis-
ordered potential. Furthermore, there is no observable
heating due to the quick switch on of the disorder. In our
experiment, therefore, the presence of the non-condensed
component seems to be linked to the motion of the BEC
in the disordered potential. A recent numerical simula-
tion using a truncated Wigner method predicts the emis-
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Motivation of these experiments:


To understand disorder effects in a many-body system 


A particularly interesting question


Interplay between interaction and disorder




In the presence of interaction:  
 More difficult


Disorder has been known to be important in solids

affects both thermodynamic and transport properties 


 For non-interacting case: Anderson localization    

P. W. Anderson, Phys. Rev. 109, 1492 (1958) 




εi ∈ [−∆,∆]−t
∑

i,j

(b†i bj + c.c) +
U

2

∑

i

ni(ni − 1) +
∑

i

εiniH =

M. P. A. Fisher, et al.,  PRB, 40, 546 (1989)  


Disordered Bose-Hubbard Model:


t

Uεi

〈 〉

The simplest case:


Superfluid(SF)

Bose glass(BG)


Mott insulator(MI)


ρs = 0, κ != 0
ρs = 0, κ = 0

ρs != 0, κ != 0
Debates on the structure of 

phase diagram over decades




SF
 MI
 SF
 MI
BG
?
Whether a direct transition between SF and MI is possible?


U U



V. Gurarie, et al, PRB 80, 214519 (2009)
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.

L. Pollet, et al, PRL 103, 140402 (2009)


Solution from recent Quantum Monte-Carlo simulations
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and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.

Many striking features on this single phase diagram 


Besides the proof 
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.
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Striking feature 1: disorder enhanced phase coherence


Why the system behaviors completely differently at small and large U?
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.
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Striking feature 2: interaction enhanced phase coherence
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Answers to above questions may be known to some experts


 A SIMPLE way to understand all these counterintuitive phenomena 


TRANSPARENTLY without resorting to numerical simulations?
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.

Q3: What is the origin for this non-trivial 

      shape (wiggle) of the phase diagram?


V. Gurarie, et.al., PRB 80, 214519 (2009)


 A wiggle feature


Striking feature 3: wiggle on the phase diagram
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.
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Figure 3.  Effect of disorder on transport and condensate fraction.  The 

overall COM velocity v of the gas after an impulse is applied is plotted as the 

T = 0
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.
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A puzzle


     Disagreement?

V. Gurarie, et al.,  PRB 80, 214519 (2009) 


Superfluidility and coherence are

    weak in the “finger” region

Q4: Why the topology of the

 phase  diagram changes 

as temperature increase?




It is not easy to access the underlying physics for above 
features from sophisticated numerical simulations


Especially for those who don’t know how to do 

Quantum Monte Carlo simulations, like me




  A simple system capturing all above features 


  A minimal model incorporating interaction & disorder 


  Exactly solvable &  Easily computed


  Reveal underlying qualitative physics transparently


 Bosons in a “disordered” double well 


Our approach: 


Qualitative understandings from a simpler system


Even though there is no long-range order


QZ, S. Das Sarma, PRA 82, 041601(R) (2010) 




What do we mean by a “disordered” double well?


Randomly distributed:
ε ∈ [−∆,∆]

Consider an ENSEMBLE


Any quantity is an ensemble averaged one
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dε〈Ô〉ε/(2∆)

1



−t(b†LbR + c.c) +
U

2
(nL(nL − 1) + nR(nR − 1))

|G〉 = (
b†L + b†R√

2
)N |0〉 |G〉 = b

†N
2

L b
†N

2
R |0〉

ε ≡ 0

Bosons in a “clean” double well


|G〉 =
∏

i

b
†N

L
i |0〉

U/t

〈b†i bj〉|i−j|→∞

Two sites model


Interaction suppresses phase coherence


〈b†LbR〉

U/tN

crossover


|G〉 =

(∑
i b†i√
L

)N

|0〉

−t
∑

i,j

(b†i bj + c.c) +
U

2

∑

i

ni(ni − 1)

Lattice model


Phase coherence




exact diagonalization
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Whether and why disorder can enhance phase coherence?

In the absence of interaction
 NO!
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Whether and why disorder can enhance phase coherence?


In the presence of interaction
 Yes!

Resonance features at 
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FIG. 2: A contour plot of C as a function of ∆/tN and U/tN
at zero temperature with the values of contours marked down.

both ∆/t and U/t in order to obtain a complete picture.
Fig.(2) shows that for large U , the contours first bend
to the right hand side when ∆ increases from zero be-
fore they eventually bend to the left hand side. We note
that the contours of C have wiggles at large U . These
wiggles arise from the structures in C as discussed in the
last paragraph. For a fixed value of U , away from the
positions of the peaks, C changes slowly, corresponding
to the parts of the contour which are nearly parallel to
the ∆ axis. When approaching the peaks, C quickly in-
creases. As a result, the contours bend towards the U
axis, forming a wiggly shape. The topology of Fig.(2)
is very similar to the nontrivial structure of the phase
boundary obtained by recent numerical simulations for
the disordered BH model at an integer filling[17, 18]. In
the latter case, the phase boundary can be viewed as the
contour for the order parameters 〈bi〉 = 0 in the thermo-
dynamic limit. This shows that our minimal two-site(i.e.
double-well) model captures the physics of the full BH
model surprisingly well.

We emphasize that the similarity of the topology be-
tween Fig.(2) and the phase diagram of the disordered
BH model is not accidental. The lattice model can be
viewed as the thermodynamic limit of the two-site prob-
lem. Moreover, the physics of the interplay between dis-
order and interaction is the same in both cases. Inter-
action discretizes the energies of the Fock states in each
site, and suppresses the tunneling between different sites.
However, disorder introduces relative energy shifts of the
Fock states at different sites. In a randomly distributed
disorder potential of large enough strength, there are al-
ways possibilities for neighboring sites to have nearly de-
generate Fock states. Effectively, the tunneling of the
particles as well as the spatial phase coherence will then
be enhanced, even leading to a phase transition from
an insulator state to a superfluid state in the thermody-
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FIG. 3: Left: C as a function of U/tN at ∆/tN = 0(dashed,
purple), 20.4(dash-double-dotted, green), 55.5(solid, brown),
83.7(dotted, blue) and 140(dash-dotted, red). Right: com-
pressibility(solid red) and C (dash-dotted blue) as a function
of ∆/tN at U/tN = 0.5. The dashed(magenta) line repre-
sents the asymptotic value of C at large interaction limit.

namic limit in the presence of strong disorder because of
this high likelihood of energy resonance between neigh-
boring sites. If the disorder strength increases further,
the weight of those configurations favoring tunneling in
all the configurations of the random potential decreases.
The phase coherence is thus eventually suppressed by
very strong disorder, as seen also in the numerical simu-
lations of the full disordered BH model[15–18].

The answer to Q2: Having answered Q1, the an-
swer to Q2 becomes clear. Fig. (3A) shows the depen-
dence of C on U/t at fixed ∆/t. For ∆ = 0, interaction
suppresses phase coherence monotonically. For ∆ #= 0,
interaction first enhances phase coherence before sup-
pressing it. These results are reminiscent of a similar
behavior of the superfluid density as a function of U/t
in the full disordered BH model[15–17]. In both cases,
interaction screens the disordered potential, since some
particles occupy the sites with lower on-site energies and
thus smooth out the effective potential for the remaining
particles. The spatial phase coherence is then enhanced.
However, if interaction becomes very strong, interaction
itself eventually destroys the phase coherence or equiva-
lently the superfluid density.

We have so far seen an interesting “two negatives make
a positive” effect on the spatial phase coherence of a sys-
tem owing to the interplay between interaction and disor-
der. With only disorder or interaction, the spatial phase
coherence is suppressed either by the single particle lo-
calization or the emergence of Mott state. When both
interaction and disorder are present, our exactly solvable
model clearly shows that the spatial phase coherence is
enhanced in the parameter regime where they are com-
parable in strength.

The answer to Q3: To extract the compressibil-
ity κε, we first calculate the chemical potential, µε =
(E0

ε (N + δN)−E0
ε (N))/δN , where E0

ε (N) is the ground
state energy of N particles at fixed ε. From the depen-
dence of µε on the particle number N , κε = ∂N/∂µε can
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both ∆/t and U/t in order to obtain a complete picture.
Fig.(2) shows that for large U , the contours first bend
to the right hand side when ∆ increases from zero be-
fore they eventually bend to the left hand side. We note
that the contours of C have wiggles at large U . These
wiggles arise from the structures in C as discussed in the
last paragraph. For a fixed value of U , away from the
positions of the peaks, C changes slowly, corresponding
to the parts of the contour which are nearly parallel to
the ∆ axis. When approaching the peaks, C quickly in-
creases. As a result, the contours bend towards the U
axis, forming a wiggly shape. The topology of Fig.(2)
is very similar to the nontrivial structure of the phase
boundary obtained by recent numerical simulations for
the disordered BH model at an integer filling[17, 18]. In
the latter case, the phase boundary can be viewed as the
contour for the order parameters 〈bi〉 = 0 in the thermo-
dynamic limit. This shows that our minimal two-site(i.e.
double-well) model captures the physics of the full BH
model surprisingly well.

We emphasize that the similarity of the topology be-
tween Fig.(2) and the phase diagram of the disordered
BH model is not accidental. The lattice model can be
viewed as the thermodynamic limit of the two-site prob-
lem. Moreover, the physics of the interplay between dis-
order and interaction is the same in both cases. Inter-
action discretizes the energies of the Fock states in each
site, and suppresses the tunneling between different sites.
However, disorder introduces relative energy shifts of the
Fock states at different sites. In a randomly distributed
disorder potential of large enough strength, there are al-
ways possibilities for neighboring sites to have nearly de-
generate Fock states. Effectively, the tunneling of the
particles as well as the spatial phase coherence will then
be enhanced, even leading to a phase transition from
an insulator state to a superfluid state in the thermody-
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pressibility(solid red) and C (dash-dotted blue) as a function
of ∆/tN at U/tN = 0.5. The dashed(magenta) line repre-
sents the asymptotic value of C at large interaction limit.

namic limit in the presence of strong disorder because of
this high likelihood of energy resonance between neigh-
boring sites. If the disorder strength increases further,
the weight of those configurations favoring tunneling in
all the configurations of the random potential decreases.
The phase coherence is thus eventually suppressed by
very strong disorder, as seen also in the numerical simu-
lations of the full disordered BH model[15–18].

The answer to Q2: Having answered Q1, the an-
swer to Q2 becomes clear. Fig. (3A) shows the depen-
dence of C on U/t at fixed ∆/t. For ∆ = 0, interaction
suppresses phase coherence monotonically. For ∆ #= 0,
interaction first enhances phase coherence before sup-
pressing it. These results are reminiscent of a similar
behavior of the superfluid density as a function of U/t
in the full disordered BH model[15–17]. In both cases,
interaction screens the disordered potential, since some
particles occupy the sites with lower on-site energies and
thus smooth out the effective potential for the remaining
particles. The spatial phase coherence is then enhanced.
However, if interaction becomes very strong, interaction
itself eventually destroys the phase coherence or equiva-
lently the superfluid density.

We have so far seen an interesting “two negatives make
a positive” effect on the spatial phase coherence of a sys-
tem owing to the interplay between interaction and disor-
der. With only disorder or interaction, the spatial phase
coherence is suppressed either by the single particle lo-
calization or the emergence of Mott state. When both
interaction and disorder are present, our exactly solvable
model clearly shows that the spatial phase coherence is
enhanced in the parameter regime where they are com-
parable in strength.

The answer to Q3: To extract the compressibil-
ity κε, we first calculate the chemical potential, µε =
(E0

ε (N + δN)−E0
ε (N))/δN , where E0

ε (N) is the ground
state energy of N particles at fixed ε. From the depen-
dence of µε on the particle number N , κε = ∂N/∂µε can
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chemical potential µ. At zero temperature, the chemical
potential of the Mott insulator state with integer fill-
ing factor can be anywhere between the two thresholds
leading to an ambiguity in the value of Eg/2. The ambi-
guity is absent in the canonical ensemble, where particle
and hole excitations can be created only in pairs, to pre-
serve the total number of particles. The grand-canonical
counterpart of the canonical situation corresponds to the
chemical potential being kept in the middle of the gap,
µ = (µ+−µ−)/2, in which case Ep = Eh = Eg/2 = Eg/2.
Therefore, below we always assume this choice of µ.

The above-mentioned ∆c = Eg/2 conjecture is based
on the assumption that the state remains gapped for
∆ < Eg/2. For ∆ > Eg/2 the state can be shown to
be gapless, because rare statistical fluctuations guaran-
tee the existence of arbitrarily large homogeneous regions
with disorder mimicking chemical potential shifts exceed-
ing particle or hole gaps. In other words the conjecture
was that the transition is of the Griffiths type. An al-
ternative scenario would claim that the transition point
happens at smaller values of ∆ due to subtle interplay
between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario
is the only one possible for the gapped-to-gapless tran-
sitions. That is, the vanishing of the gap at the critical
point is exclusively due to a zero concentration of rare re-
gions in which extreme fluctuations of disorder reproduce
a regular gapless system. In the vicinity of the critical
point, the gapless phase must necessarily be “glassy”, be-
cause it consists of large gapless (in our case superfluid)
domains embedded in a gapped state. The absence of
phase coherence between domains is caused by their di-
verging distance between at the critical line. To illustrate
these general conclusions, we consider the exactly solv-
able random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the
Bose-Hubbard model is fixed by theorems, it is both in-
teresting and important to determine transition lines and
properties of phases numerically. In particular, this is
necessary for revealing potential difficulties in observing
and identifying the phases. To this end, we have cal-
culated the full phase diagram of the disordered three-
dimensional Bose-Hubbard model, shown in Fig. 1, by
quantum Monte Carlo simulations based on the worm
algorithm [26, 27]. This phase diagrams shows a few
remarkable features: an infinite slope of the superfluid
– Bose glass line ∆c(U), in the weakly interacting gas
U/t <∼ 1, as predicted by the scenario of percolating su-
perfluid lakes developed in Ref. [25], and an enormous
scale for the superfluid – Bose glass transition, ∆/t ∼ 300
at intermediate coupling strength, 1 <∼ U/t <∼ 30. Here
U is the strength of the on-site repulsion between bosons
and t is the amplitude of hopping transitions between
the nearest neighbor sites (see Fig. 1). The percolation
character of superfluidity in the vicinity of the superfluid
to Bose glass transition, is most likely the reason for the
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FIG. 1: Phase diagram of the disordered three dimensional
Bose-Hubbard model at unity filling. In the absence of dis-
order, the system undergoes a quantum phase transition be-
tween SF and MI phases. The presence of disorder allows
for a compressible, insulating BG phase, which always inter-
venes between the MI and SF phases because of the theorem
of inclusions [1]. The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At
U/t → 0, the SF–BG transition line has an infinite slope [25].

enormous scale. In this range of parameters, the localized
states have a localization length of the order of one lat-
tice spacing, as opposed to the picture of large superfluid
lakes of Ref. [25].

The nature of the transitions and small superfluid frac-
tion in the SF phase have profound implications for the
experimental observation of the phase diagram. We focus
here on cold-atom experiments, where recent experimen-
tal claims are partly in line, partly in contradiction with
the phase diagram shown above. We argue that present-
day cold-atom experiments face numerous difficulties in
obtaining the full phase diagram; for example, the Grif-
fiths type Bose glass – Mott insulator transition requires
macroscopically large system sizes to properly identify
the Bose glass phase. We also provide arguments why
experiments seem to have missed the superfluid ‘finger’
above the Mott insulator in Fig. 1, though the right scale
for the transition between the superfluid phase and the
Bose glass phase for very strong disorder has been re-
vealed [28].

The paper is organized as follows. In Sec. II we in-
troduce the model and recapitulate the theorem of in-
clusions. The transition between the Mott insulator and
Bose glass phases is discussed in Sec. III and illustrated
by the exactly solvable random transverse Ising model
in one dimension. We proceed with a discussion of the
full phase diagram in Sec. IV and results of cold-atom
experiments in Sec. V. The conclusions are presented in
Sec. VI.
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Contours of 
〈b†LbR〉/N Contours of 
 〈b†i bj〉|i−j| = 0

The only difference: Number of wiggles


Different particle number per site
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|i− j|→∞
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From two-site problem to lattice case


Any exactly solvable lattice mode for helping 

       understand disordered systems? 




1D hard core bosons in a lattice
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1

|i− j|1/2

µc = 2t
MI ( Fully filled band in fermion model) 
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Figure 5: ρ50,60
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both ∆/t and U/t in order to obtain a complete picture.
Fig.(2) shows that for large U , the contours first bend
to the right hand side when ∆ increases from zero be-
fore they eventually bend to the left hand side. We note
that the contours of C have wiggles at large U . These
wiggles arise from the structures in C as discussed in the
last paragraph. For a fixed value of U , away from the
positions of the peaks, C changes slowly, corresponding
to the parts of the contour which are nearly parallel to
the ∆ axis. When approaching the peaks, C quickly in-
creases. As a result, the contours bend towards the U
axis, forming a wiggly shape. The topology of Fig.(2)
is very similar to the nontrivial structure of the phase
boundary obtained by recent numerical simulations for
the disordered BH model at an integer filling[17, 18]. In
the latter case, the phase boundary can be viewed as the
contour for the order parameters 〈bi〉 = 0 in the thermo-
dynamic limit. This shows that our minimal two-site(i.e.
double-well) model captures the physics of the full BH
model surprisingly well.

We emphasize that the similarity of the topology be-
tween Fig.(2) and the phase diagram of the disordered
BH model is not accidental. The lattice model can be
viewed as the thermodynamic limit of the two-site prob-
lem. Moreover, the physics of the interplay between dis-
order and interaction is the same in both cases. Inter-
action discretizes the energies of the Fock states in each
site, and suppresses the tunneling between different sites.
However, disorder introduces relative energy shifts of the
Fock states at different sites. In a randomly distributed
disorder potential of large enough strength, there are al-
ways possibilities for neighboring sites to have nearly de-
generate Fock states. Effectively, the tunneling of the
particles as well as the spatial phase coherence will then
be enhanced, even leading to a phase transition from
an insulator state to a superfluid state in the thermody-
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FIG. 3: Left: C as a function of U/tN at ∆/tN = 0(dashed,
purple), 20.4(dash-double-dotted, green), 55.5(solid, brown),
83.7(dotted, blue) and 140(dash-dotted, red). Right: com-
pressibility(solid red) and C (dash-dotted blue) as a function
of ∆/tN at U/tN = 0.5. The dashed(magenta) line repre-
sents the asymptotic value of C at large interaction limit.

namic limit in the presence of strong disorder because of
this high likelihood of energy resonance between neigh-
boring sites. If the disorder strength increases further,
the weight of those configurations favoring tunneling in
all the configurations of the random potential decreases.
The phase coherence is thus eventually suppressed by
very strong disorder, as seen also in the numerical simu-
lations of the full disordered BH model[15–18].

The answer to Q2: Having answered Q1, the an-
swer to Q2 becomes clear. Fig. (3A) shows the depen-
dence of C on U/t at fixed ∆/t. For ∆ = 0, interaction
suppresses phase coherence monotonically. For ∆ #= 0,
interaction first enhances phase coherence before sup-
pressing it. These results are reminiscent of a similar
behavior of the superfluid density as a function of U/t
in the full disordered BH model[15–17]. In both cases,
interaction screens the disordered potential, since some
particles occupy the sites with lower on-site energies and
thus smooth out the effective potential for the remaining
particles. The spatial phase coherence is then enhanced.
However, if interaction becomes very strong, interaction
itself eventually destroys the phase coherence or equiva-
lently the superfluid density.

We have so far seen an interesting “two negatives make
a positive” effect on the spatial phase coherence of a sys-
tem owing to the interplay between interaction and disor-
der. With only disorder or interaction, the spatial phase
coherence is suppressed either by the single particle lo-
calization or the emergence of Mott state. When both
interaction and disorder are present, our exactly solvable
model clearly shows that the spatial phase coherence is
enhanced in the parameter regime where they are com-
parable in strength.

The answer to Q3: To extract the compressibil-
ity κε, we first calculate the chemical potential, µε =
(E0

ε (N + δN)−E0
ε (N))/δN , where E0

ε (N) is the ground
state energy of N particles at fixed ε. From the depen-
dence of µε on the particle number N , κε = ∂N/∂µε can

To see a world in a grain of sand, 
And a heaven in a wild flower, 
Hold infinity in the palm of your hand, 
And eternity in an hour.                   
                              — William Blake 

一沙一世界 �
一花一天堂�
握無窮於掌�
剎那即永恆�
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