
Magnetic phases of the Hubbard model 
some answers from quantum simulations,                

the “old-fashioned” way                        

• Itinerant ferromagnetism in Fermi gas - connect. w. Hubbard model

• Recent advances in quantum Monte Carlo
 Phaseless appr. controls sign/phase problem in auxiliary-field QMC
 Improves QMC accuracy, better convergence to thermodynamic limit

• Ferromagnetism in dilute Hubbard model?

• Antiferromagnetism in Hubbard models (connection with high-Tc?) 
 Optical lattices: experimental simulation? Advances in QMC --> synergy
 What happens to the antiferromagnetic order upon doping? 

• prediction: incommensurate spin-density waves    
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‣ What is the physical basis for ferromagnetism in metals?

‣ New interests:  Expt aimed at emulating the Stoner Hamiltonian:                    
hints of ferromagnetic instability observed in trapped Fermi gas 

Motivation
Stoner model of ferromagnetism Exact diagonalization of few-particle problem on grid Conclusion and outlook

Jo et al. experiment: measurements

• At T/TF = 0.12 (lowest used)

• A maximum in atom loss rate:

k
0
F
a ≈ 2.5

• A minimum in kinetic energy:

k
0
F
a ≈ 2.2,

• A maximum in cloud size.

⇓

Indirect evidence of ferromagnetic ordering!

Jo et. al., Science (’09)

Wednesday, May 11, 2011



• Summary of expt: (Jo et. al., 2009)

✦ equal mixture of F=1/2 hyperfine states of Li6                      
=> 2-component Fermi gas with short-range interaction

✦ a>0, i.e., excited state branch (molecular bound state below) 
✦ Transition point ka ~ 1.9(2)
✦ No observation of FM domains

Motivation

• Interpretation has been debated          (Ho, Zhai, ....)

• Recent MIT expt  (Zwierlein et al)
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‣ The 3-D Hubbard model is a reasonable representation 
of the Stoner Hamiltonian

‣ Caveats!

✦ Hubbard model:  Ground state, repulsive interaction, equilibrium
Experiment:  Excited states, attractive interaction, dynamic (quench)

✦ The scattering length on a lattice is bounded by lattice spacing
(Castin 2004)

‣ Does the model have an instability towards ferromagnetism? 
(What is the minimal model for itinerant FM in metals?)

itinerant electrons + local interaction

alattice =
as

1 + 3.173as

Motivation
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Introduction:  Hubbard model

• Simplest model combining band structure and interaction:

Half-filling: n=1
Consider:
 T=0K
  
Parameters:
 U/t >0     (t=1)
 n=(0,1]; doping h=1-n

- Optical lattice emulator?
- Extremely difficult computational problem

Electrons on a lattice:       Size N=L^d       
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Introduction:  Hubbard model

• Simplest model combining band structure and interaction:

Half-filling: n=1

Does it have a ferromagnetic instability?

‣ Neither K nor V term favors FM alone

‣ Academic case: Nagaoka-Thouless:     
1 hole, U=infty, bipartite: yes

Electrons on a lattice:       Size N=L^d       
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‣ Stoner’s criterion U ·N(εF ) > 1
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‣ Stoner’s criterion

‣ The ground state is antiferromagnetic at half-filling n = 1

‣ Phase diagram has large domain of ferromagnetism

U ·N(εF ) > 1
828 Langmann and Wallin

0
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Fig. 1. Phase diagram of the 2D Hubbard model as a function of U and doping ρ − 1 for parameters
t = 1 and t ′ = 0. We use Hartree–Fock theory restricted to ferromagnetic (F), antiferromagnetic (AF)
and paramagnetic (P) states, and we find large mixed regimes where neither of these translational
invariant states is thermodynamically stable. The results are for L = 60 and β = 1000 which is
practically indistinguishable from the thermodynamic limit. (The parameters are defined in the main
text.)

and 3. As mentioned, previous mean field phase diagrams for the 2D Hubbard
model (t ′ = 0) predict an AF phase in a finite region around half filling. (8) Our
corresponding phase mean field diagram is given in Fig. 1. It shows that the AF
phase exists only strictly at half filling, and at finite doping close to half filling
no simple translation invariant state is thermodynamically stable, in agreement
with unrestricted Hartree–Fock theory.(10–12,23) Our discussion in Section 3 gives
an intuitive explanation of the seemingly paradoxical fact that, even though the
AF phase at half filling is very stable, it cannot persist at any non-zero doping
value.

Our main results are the full phase diagrams for 2D t − t ′ − U Hubbard model
for t ′ = 0 and t ′ = −0.35t in Figs. 1 and 2, respectively. They were obtained for
a system size so large that they are practically identical with the thermodynamic
limit. The phase diagrams are remarkably rich and very different from correspond-
ing previous results: compare our Fig. 1 with Fig. 3 in Ref. 8 and our Fig. 2 with
Fig. 1 in Ref. 9. Our results demonstrate that mixed phases are a typical feature of
2D Hubbard-type models: as one changes doping one never goes directly from one
mean field phase to another, but there seems always a finite doping regime with a
mixed phase in between. It is also interesting to note that the qualitative features

Langmann & Wallin (2007)

2D Hubbard

Andriotis et al. (1993)

3D Hubbard

How does correlation modify this?

Mean-field theory
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Constrained path auxiliary field QMC

To obtain ground state, use projection in imaginary-time: 

           Hubbard-Stratonovich transformation

next 

E.g., trick by Hirsch:

Hamiltonian:
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Toy system: Hubbard model
Illustration of how AFQMC works:

      H2 molecule

mean-field auxiliary-field QMC

wf wf

wf

+ ....+
- Formalism similar to LGT
- But sign problem severe in 
    most problems of interest
- Reformulated into open-ended 
    random walks 
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The sign problem 

•           paths in Slater 
determinant space
 
• Suppose        is known; 
consider “hyper-node” line

• If path reaches hyper-node   

then its descendent paths collectively contribute 0

next 

E.g., in Hubbard:

• MC signal is exponentially small compared to noise

    In special cases (1/2 filling, or U<0), symmetry keeps paths to one side 
 no sign problem
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How to control the sign problem? 

next 

keep only paths that never reach the node 

require
Zhang, Carlson, Gubernatis, ’97
Zhang, ’00

• Constrained path appr.

Trial wave function used to make detection

• Phaseless approximation

     general interaction: complex HS --> phase problem
      twisted boundary condition: removes shell effects --> complex w.f. 

Zhang & Krakauer, ’03; Chang & Zhang, ’08
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Benchmark
• Sampling 1000 random TABCs

3x3: Largest relative error:
  ~ 0.2% for U/t = 4
    ~ 1.0% for U/t = 8

• Summary: CPMC + TABCs
 controls sign problem 
 many benchmarks (including      

ab initio electronic structure)
 Most accurate many-body 

method available at 
intermediate interactions for 
large systems (2- & 3-D)

Equation of state for 3x3 Hub 

dilute 4x4 at n=0.25
  ~ 0.2% for U/t = 16
    ~ 0.6% for U/t = 30

Chang & SZ, PRB ’08
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‣ No FM transition was found: 0 < n < 0.5

‣ Partially polarized state is unlikely to be stable
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CHIA-CHEN CHANG, SHIWEI ZHANG, AND DAVID M. CEPERLEY PHYSICAL REVIEW A 82, 061603(R) (2010)

is the origin of the sign problem. To control the problem, the
walker is required to satisfy the constraint 〈!T |φ〉 > 0 in the
course of the random walk. This is the only approximation
in our method. More formal discussions of the theoretical
basis of the generalized constrained path approximation and
benchmarks can be found elsewhere [16,17]. In the Hubbard
model, the energy at U = 4t is typically within < 0.5% of
the exact diagonalization result [18]. Extensive benchmarks of
this approach for molecules and solids are in Refs. [20,21].

The constrained path approximation is similar in spirit to
the fixed-node approximation in the diffusion Monte Carlo
(DMC) method [22,23], which has been used for all recent
simulation work on the problem of itinerant ferromagnetism
in the Stoner model [10,11,24]. In fixed-node DMC one uses
a real-space trial function !T (R) to determine the sign of
the ground-state wave function. The random walks, which
involve movements of electron coordinates R, are constrained
to the region where !T (R) > 0. Since in CPMC the random
walks take place in the SD space, where fermionic statistics
are automatically maintained, the sign problem is reduced. As
a result, the constrained path approximation is less sensitive to
|!T 〉 and typically has smaller systematic errors.

In this work we apply twist-averaged boundary conditions
(TABCs) [25]. Under TABCs, the wave function gains a phase
when electrons wind around the periodic boundary conditions:
!(. . . ,rj + L, . . .) = eiL̂·!!(. . . ,rj , . . .), where L̂ is the unit
vector along L, and ! = (θx,θy,θz) is a random twist over
which we average. A simple generalization of the CPMC
method can be made to handle the overall phase that arises from
the TABC [17,18]. As an additional benchmark for the present
work, we studied several 4 × 4 systems at low densities. For
example, at n = 0.25, the agreement between the CPMC and
exact diagonalization energies (both averaged over the same
set of 1000 ! points) is within 0.2% for U = 16t and 0.6%
for U = 30t .

We first compare the ground-state energy of an unpolarized
system (N↑ = N↓) with that of a fully polarized state at the
same total density. The results are summarized in Fig. 1.
Because electrons of the same spin do not interact, the
energy of the fully polarized state, eFM, is purely kinetic
and does not depend on U . In mean-field (MF) theory,
the energy of a system with nσ = Nσ /N (with n = n↑ +
n↓) is eMF(U,n) = [e0(n↑)n↑ + e0(n↓)n↓ + Un↑n↓]/n, where
e0(nσ ) is the energy of the fully polarized system at density nσ .
At n = 0.25, MF predicts a paramagnetic-to-ferromagnetic
phase transition at U = 13.9t . This is to be compared to the
corresponding transition point kF a ∼ π/2 in the continuum
Stoner Hamiltonian, where kF = (3π2n)1/3 is the Fermi
wave vector and a is the scattering length in continuum.
When the system density is lowered to n = 0.0625, the MF
transition in the Hubbard model is at a larger interaction,
U = 29.3t . The equation of state has also been obtained from
perturbation theory for an unpolarized system [26]: eP (U,n) =
eMF(U,n) + ec(U,n). The last term, ec(U,n), is the correlation
energy estimated to O(U 2). The result is also included in
Fig. 1.

The CPMC result for the ground-state energy eCPMC is
obtained by averaging over !. The energies calculated from
different lattice sizes are shown by different symbols in Fig. 1.
It can be seen that our remaining finite-size errors are negligible
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FIG. 1. (Color online) Ground-state energy per particle e as a
function of interaction strength U/t at n = 0.25 (left) and n = 0.0625
(right). Symbols represent eCPMC. Dashed (blue) line corresponds to
the energy of a saturated ferromagnetic state (eFM). eMF energy is
represented by the thick solid (green) line. eP (perturbation theory
[26]) is plotted by dot-dashed line. The inset on the right shows
e vs spin polarization η ≡ (n↑ − n↓)/(n↑ + n↓) for an 83 lattice at
n = 0.0625.

on this scale. Free-electron trial wave functions are used for
the constraint. In a few cases we have also checked with
unrestricted Hartree-Fock trial wave functions, which gave
statistically indistinguishable CPMC energies. The energies
shown are for finite time steps, with 'τ satisfying U'τ < 0.2.
The residual Trotter error is O(10−2), smaller than the symbol
size.

We see that MF theory, which gives a reasonable estimate of
the energy at small U , quickly shows severe deviations as the
interaction becomes stronger. The perturbation result eP (U,n)
gives an improved estimate of energy for small U , but deviates
once the system enters the intermediate interaction regime
U ! 5t . At the MF transition point, the CPMC energy is
significantly lower than eFM. Indeed the CPMC energy remains
lower than eFM across the entire range of U simulated. No
indication of a ferromagnetic transition is seen.

We find no instability toward partially polarized states.
As illustrated in the inset in Fig. 1, the energy grows
monotonically with spin polarization.

Individual components of the energy are shown in Fig. 2. As
U increases, electrons in the unpolarized system occupy higher
momentum states, outside the Fermi level, which increases
the kinetic energy compared to the MF result. This enables
the system to drastically decrease the interaction energy by
suppressing double occupancy. The net effect is that the total
energy is greatly reduced and remains below eMF and eFM.

To probe the nature of the ground state, we examine the
spin-dependent pair correlation function:

gσσ ′(r) = 1
n̄σ n̄σ ′

1
N

∑

r′

〈nr+r′,σ · nr′,σ ′ 〉. (2)

The CPMC expectations are evaluated by the back-propagation
technique [16,27]. We average over different r’s to obtain
gσσ ′(r), with r ≡ |r| since the correlation function is primarily
a function of distance in the paramagnetic or ferromagnetic
phases.

The antiparallel g↑↓(r) is a constant in a noninteracting
system or in the MF solution. In the presence of interaction,

061603-2

η =
N↑ −N↓
N↑ +N↓

Essentially no finite size effects in the QMC data

Ferromagnetism in 3D dilute Hubbard model?

Energy results:
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‣ Interaction creates 
excitations
beyond the Fermi surface,
increasing the
kinetic energy

‣ At large U, the
interaction energy
is lowered by
correlation: 

8x8x8,  n = 0.0625
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FIG. 2. (Color online) Kinetic (left panel) and interaction (right
panel) energies as a function of interaction strength at density n =
0.0625. Symbols are the CPMC data obtained on an 83 lattice. Lines
are defined in the same way as in Fig. 1. The inset on the right shows
the double occupancy, normalized to 1 at U = 0.

a correlation hole is created surrounding each electron. At
n = 0.0625, the correlation hole size is !

√
3. As U is

increased, the correlation hole becomes deeper, as illustrated
in the left panel in Fig. 3. Compared to g↑↓(r), the change
in the parallel-spin pair correlation g↑↑(r) is less dramatic
from the MF or noninteracting result. Strong interaction does
appear to increase g↑↑(r) slightly at short distance. However,
the correlation remains much less than that in the FM case.

The creation of a correlation hole is a result of minimizing
the interaction energy. Electrons of opposite spins rearrange
positions to reduce the potential energy. The cost of the rear-
rangement is the kinetic-energy increase, as discussed earlier.
This can also be observed in Fig. 4 where the momentum
distribution nk is shown for different interaction strengths. We
have plotted nk as a function of the single-particle energy
level ε(k) = 2

∑
α=x,y,z[1 − cos(kα + #α/L)], in units of the

Fermi energy εF . Each curve contains the result of nk from
multiple # points. At U = 4t , the distribution is very close
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FIG. 3. (Color online) Left: Antiparallel pair correlation function
of an unpolarized state at different interaction strengths. Right:
Comparison of the parallel pair correlation functions of the fully
polarized state (FM) and the unpolarized states at different interaction
strengths. The inset shows $g↑↑(r) = g↑↑(r) − g0

↑↑(r), where g0
↑↑(r)

is the correlation function of the unpolarized noninteracting system.
In both panels, the system is an 83 lattice at n = 0.0625.
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FIG. 4. (Color online) The momentum distribution nk as a
function of the single-particle energy. Two lattice sizes are shown, at
n = 0.0625. Each system averaged over ten random #’s, except for
U = 30t which is for a single #.

to the noninteracting momentum distribution with only a few
low-lying excitations near the Fermi surface (FS). As U is
increased, more higher k states are populated outside the
FS. In nk a jump appears at εF . The jump indicates that
the system is a normal Fermi liquid, with the value of the
jump proportional to the renormalization factor Z. Its precise
value can be determined with more calculations and finite-size
scaling.

Although we have focused on the ground state of a
homogeneous Fermi gas, it is not difficult to extend the
results to the case with an external trap. For example, the
results in Fig. 2 indicate that, with a trap, there would be a
minimum in the curve of eK versus interaction strength, as
observed in the experiment [8] (see also Ref. [9]). Effects of
confinement on the kinetic energy have been investigated for
trapped Bose gases in Ref. [15]. The MF eK was shown to
decrease monotonically because the gas expands in the trap
as the scattering length a is increased; on the other hand,
correlation effects lead to an increase of eK , similar to Fig. 2.
This competition results in a nonmonotonic curve, with a
minimum in the kinetic energy.

The Hubbard model, of interest in its own right, contains
some of the same features (namely itinerant electrons and local
interaction) as the continuum Stoner Hamiltonian. However,
there are differences with respect to the experiment worth
emphasizing. The experiment is in the continuum, using a
quench from an excited state. The interaction is attractive
(negative), with an effective positive scattering length. (How-
ever, there are questions whether such an effective description
is appropriate [12].) In our simulation, we use a discretized
representation, with positive on-site interaction. As mentioned
before, the lattice model leads to a scattering length bounded
by roughly the lattice spacing. Using the above values for the
maximum scattering length and kF in the unpolarized phase,
we find that kF a < 1.03n1/3.

Recently the problem of itinerant ferromagnetism in repul-
sive Fermi gases has been studied by several groups [10,11,24]
using the DMC method with the fixed-node approximation.
These calculations all found the existence of a ferromagnetic
instability. The DMC Hamiltonians are different from ours.
Our calculations are on a lattice, with on-site interactions,
while DMC works in the continuum. The atomic interaction
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FIG. 2. (Color online) Kinetic (left panel) and interaction (right
panel) energies as a function of interaction strength at density n =
0.0625. Symbols are the CPMC data obtained on an 83 lattice. Lines
are defined in the same way as in Fig. 1. The inset on the right shows
the double occupancy, normalized to 1 at U = 0.

a correlation hole is created surrounding each electron. At
n = 0.0625, the correlation hole size is !

√
3. As U is

increased, the correlation hole becomes deeper, as illustrated
in the left panel in Fig. 3. Compared to g↑↓(r), the change
in the parallel-spin pair correlation g↑↑(r) is less dramatic
from the MF or noninteracting result. Strong interaction does
appear to increase g↑↑(r) slightly at short distance. However,
the correlation remains much less than that in the FM case.

The creation of a correlation hole is a result of minimizing
the interaction energy. Electrons of opposite spins rearrange
positions to reduce the potential energy. The cost of the rear-
rangement is the kinetic-energy increase, as discussed earlier.
This can also be observed in Fig. 4 where the momentum
distribution nk is shown for different interaction strengths. We
have plotted nk as a function of the single-particle energy
level ε(k) = 2

∑
α=x,y,z[1 − cos(kα + #α/L)], in units of the

Fermi energy εF . Each curve contains the result of nk from
multiple # points. At U = 4t , the distribution is very close
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FIG. 3. (Color online) Left: Antiparallel pair correlation function
of an unpolarized state at different interaction strengths. Right:
Comparison of the parallel pair correlation functions of the fully
polarized state (FM) and the unpolarized states at different interaction
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is the correlation function of the unpolarized noninteracting system.
In both panels, the system is an 83 lattice at n = 0.0625.
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function of the single-particle energy. Two lattice sizes are shown, at
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to the noninteracting momentum distribution with only a few
low-lying excitations near the Fermi surface (FS). As U is
increased, more higher k states are populated outside the
FS. In nk a jump appears at εF . The jump indicates that
the system is a normal Fermi liquid, with the value of the
jump proportional to the renormalization factor Z. Its precise
value can be determined with more calculations and finite-size
scaling.

Although we have focused on the ground state of a
homogeneous Fermi gas, it is not difficult to extend the
results to the case with an external trap. For example, the
results in Fig. 2 indicate that, with a trap, there would be a
minimum in the curve of eK versus interaction strength, as
observed in the experiment [8] (see also Ref. [9]). Effects of
confinement on the kinetic energy have been investigated for
trapped Bose gases in Ref. [15]. The MF eK was shown to
decrease monotonically because the gas expands in the trap
as the scattering length a is increased; on the other hand,
correlation effects lead to an increase of eK , similar to Fig. 2.
This competition results in a nonmonotonic curve, with a
minimum in the kinetic energy.

The Hubbard model, of interest in its own right, contains
some of the same features (namely itinerant electrons and local
interaction) as the continuum Stoner Hamiltonian. However,
there are differences with respect to the experiment worth
emphasizing. The experiment is in the continuum, using a
quench from an excited state. The interaction is attractive
(negative), with an effective positive scattering length. (How-
ever, there are questions whether such an effective description
is appropriate [12].) In our simulation, we use a discretized
representation, with positive on-site interaction. As mentioned
before, the lattice model leads to a scattering length bounded
by roughly the lattice spacing. Using the above values for the
maximum scattering length and kF in the unpolarized phase,
we find that kF a < 1.03n1/3.

Recently the problem of itinerant ferromagnetism in repul-
sive Fermi gases has been studied by several groups [10,11,24]
using the DMC method with the fixed-node approximation.
These calculations all found the existence of a ferromagnetic
instability. The DMC Hamiltonians are different from ours.
Our calculations are on a lattice, with on-site interactions,
while DMC works in the continuum. The atomic interaction
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FIG. 2. (Color online) Kinetic (left panel) and interaction (right
panel) energies as a function of interaction strength at density n =
0.0625. Symbols are the CPMC data obtained on an 83 lattice. Lines
are defined in the same way as in Fig. 1. The inset on the right shows
the double occupancy, normalized to 1 at U = 0.

a correlation hole is created surrounding each electron. At
n = 0.0625, the correlation hole size is !

√
3. As U is

increased, the correlation hole becomes deeper, as illustrated
in the left panel in Fig. 3. Compared to g↑↓(r), the change
in the parallel-spin pair correlation g↑↑(r) is less dramatic
from the MF or noninteracting result. Strong interaction does
appear to increase g↑↑(r) slightly at short distance. However,
the correlation remains much less than that in the FM case.

The creation of a correlation hole is a result of minimizing
the interaction energy. Electrons of opposite spins rearrange
positions to reduce the potential energy. The cost of the rear-
rangement is the kinetic-energy increase, as discussed earlier.
This can also be observed in Fig. 4 where the momentum
distribution nk is shown for different interaction strengths. We
have plotted nk as a function of the single-particle energy
level ε(k) = 2

∑
α=x,y,z[1 − cos(kα + #α/L)], in units of the

Fermi energy εF . Each curve contains the result of nk from
multiple # points. At U = 4t , the distribution is very close

0 1 2 3 4 5 6 7
r

0.0

0.2

0.4

0.6

0.8

1.0

U = 0
U = 8t
U = 24t

0 1 2 3 4 5 6 7
r

0.0

0.2

0.4

0.6

0.8

1.0

FM
U = 8t
U = 24t

0 1 2 3 4 5 6 7
r

0.00

0.05

0.10

0.15

0.20

g↑↓(r) g↑↑(r)

∆g↑↑(r)

FIG. 3. (Color online) Left: Antiparallel pair correlation function
of an unpolarized state at different interaction strengths. Right:
Comparison of the parallel pair correlation functions of the fully
polarized state (FM) and the unpolarized states at different interaction
strengths. The inset shows $g↑↑(r) = g↑↑(r) − g0

↑↑(r), where g0
↑↑(r)

is the correlation function of the unpolarized noninteracting system.
In both panels, the system is an 83 lattice at n = 0.0625.
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FIG. 4. (Color online) The momentum distribution nk as a
function of the single-particle energy. Two lattice sizes are shown, at
n = 0.0625. Each system averaged over ten random #’s, except for
U = 30t which is for a single #.

to the noninteracting momentum distribution with only a few
low-lying excitations near the Fermi surface (FS). As U is
increased, more higher k states are populated outside the
FS. In nk a jump appears at εF . The jump indicates that
the system is a normal Fermi liquid, with the value of the
jump proportional to the renormalization factor Z. Its precise
value can be determined with more calculations and finite-size
scaling.

Although we have focused on the ground state of a
homogeneous Fermi gas, it is not difficult to extend the
results to the case with an external trap. For example, the
results in Fig. 2 indicate that, with a trap, there would be a
minimum in the curve of eK versus interaction strength, as
observed in the experiment [8] (see also Ref. [9]). Effects of
confinement on the kinetic energy have been investigated for
trapped Bose gases in Ref. [15]. The MF eK was shown to
decrease monotonically because the gas expands in the trap
as the scattering length a is increased; on the other hand,
correlation effects lead to an increase of eK , similar to Fig. 2.
This competition results in a nonmonotonic curve, with a
minimum in the kinetic energy.

The Hubbard model, of interest in its own right, contains
some of the same features (namely itinerant electrons and local
interaction) as the continuum Stoner Hamiltonian. However,
there are differences with respect to the experiment worth
emphasizing. The experiment is in the continuum, using a
quench from an excited state. The interaction is attractive
(negative), with an effective positive scattering length. (How-
ever, there are questions whether such an effective description
is appropriate [12].) In our simulation, we use a discretized
representation, with positive on-site interaction. As mentioned
before, the lattice model leads to a scattering length bounded
by roughly the lattice spacing. Using the above values for the
maximum scattering length and kF in the unpolarized phase,
we find that kF a < 1.03n1/3.

Recently the problem of itinerant ferromagnetism in repul-
sive Fermi gases has been studied by several groups [10,11,24]
using the DMC method with the fixed-node approximation.
These calculations all found the existence of a ferromagnetic
instability. The DMC Hamiltonians are different from ours.
Our calculations are on a lattice, with on-site interactions,
while DMC works in the continuum. The atomic interaction
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correlation hole exchange hole

- Enhanced ferromag. corr, but short-range, weaker than in FM phase
- Consistent with a paramagnetic Fermi liquid

Correlation effects

Pair-correlation function:
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• Expt:

✦ Transition point ka ~ 1.9(2)
✦ Quench of excited state (dynamics?)

Comment & connection to other calculations

• Other calculations/theory:

✦ Mean-field in continuum gives ka~1.5; fluctuation correction: ka~1
✦ Diffusion Monte Carlo: ka=0.8-0.9                                                                                  

Conduit et al, ’09; Pilati et al, ’10; Chang et. al. ’09 

✦ However, all used “hard-sphere” potential (scattering length appr.)  
to remove molecular states. This over-estimates trends for FM and 
can cause errors                                                            
- see Zhou, Ceperley, SZ: arXiv/1103.3534
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• No ferromagnetism is found in the dilute 3-D Hubbard 
model up to U~30t, with density up to n=0.5.  

• Energy is lowered by creating correlation holes                               
(cf. Wigner, electron gas)

• Caveats:

✦ ground state; repulsive contact int.; equilibrium (calc)     vs.       
excited state; attractive int. (a>0); dynamic (expt)

✦ scattering length in our model (repulsive 3D Hubbard) is  
bounded by latt. spacing

 Summary on itinerant FM in Fermi gas

Chang, SZ, Ceperley, PRA, 82, 061603(R) (2010)
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• Half-filling: antiferromagnetic (AF) order
           (Furukawa & Imada 1991; Tang & Hirsch 1983; White et al, 1989; .…)

•   Model for high-Tc? Must understand magnetism and its fluctuations first!  

Magnetic properties at larger density? 

Calculate AF correlation:

next 

12 x 12, n = 1.0, U/t=4

What happens to the AF order with doping?
Wednesday, May 11, 2011



‣ Note even the HF answer has not been unambiguous

828 Langmann and Wallin

0

5

10

15

20

U

P P

mixed mixed

F F

AF

Fig. 1. Phase diagram of the 2D Hubbard model as a function of U and doping ρ − 1 for parameters
t = 1 and t ′ = 0. We use Hartree–Fock theory restricted to ferromagnetic (F), antiferromagnetic (AF)
and paramagnetic (P) states, and we find large mixed regimes where neither of these translational
invariant states is thermodynamically stable. The results are for L = 60 and β = 1000 which is
practically indistinguishable from the thermodynamic limit. (The parameters are defined in the main
text.)

and 3. As mentioned, previous mean field phase diagrams for the 2D Hubbard
model (t ′ = 0) predict an AF phase in a finite region around half filling. (8) Our
corresponding phase mean field diagram is given in Fig. 1. It shows that the AF
phase exists only strictly at half filling, and at finite doping close to half filling
no simple translation invariant state is thermodynamically stable, in agreement
with unrestricted Hartree–Fock theory.(10–12,23) Our discussion in Section 3 gives
an intuitive explanation of the seemingly paradoxical fact that, even though the
AF phase at half filling is very stable, it cannot persist at any non-zero doping
value.

Our main results are the full phase diagrams for 2D t − t ′ − U Hubbard model
for t ′ = 0 and t ′ = −0.35t in Figs. 1 and 2, respectively. They were obtained for
a system size so large that they are practically identical with the thermodynamic
limit. The phase diagrams are remarkably rich and very different from correspond-
ing previous results: compare our Fig. 1 with Fig. 3 in Ref. 8 and our Fig. 2 with
Fig. 1 in Ref. 9. Our results demonstrate that mixed phases are a typical feature of
2D Hubbard-type models: as one changes doping one never goes directly from one
mean field phase to another, but there seems always a finite doping regime with a
mixed phase in between. It is also interesting to note that the qualitative features

Langmann & Wallin (2007)

2D Hubbard

Andriotis et al. (1993)

3D Hubbard

How does correlation modify this?

Mean-field theory

Xu, Chang, Walter, SZ, 2011
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• Free-electron trial w.f.
• Use 20 ~ 300 random                                               

twist angles
• Data of different lattice

sizes has good agreement
at n < 0.9

• “Unstable” region is found
on 8x8, 12x12, 16x16     

22
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frustrated long wavelength mode ? phase separation ?

n ∼ 0.92

n = 1

∂2e(n)

∂n2
< 0

Equation of state in 2D
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• Use rectangular lattices to probe correlation length L > 16
• Up to 8x128 supercell (dimension of CI space: 10^600 !)
• Detect spatial structures using correlation functions

Spin-spin correlation

8x32
n = 0.9375

8x64

8x32

8x64

 Periodic boundary condition is
    used when calculating C(r)

 The observed structure emerges
    from a free electron trial state

“staggered”:               
(-1)^y C(x,y)
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• TABC removes one-body shell effects, but not two-body 
finite-size effects:

24
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• Instability is from frustration of SDW due to finite size
• At n = 0.9375,  need L>~32 to detect SDW state
     (Previous calculations: Ly~12, with large shell effects)

Rectangular supercells, increasing Ly

Equation of state, again
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Doping h = (1-n)  dependence

• Wavelength decreases with doping; as does the amplitude
• SDW terminates at finite doping (~0.15), enters paramagnetic state
• Wavelength appears           

Wavelength versus doping

4x64, U/t = 4.0

∝ 1/h
Chang & SZ, PRL 104, 116402 (2010)
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• At U/t=4, charge is uniform:
     -  No peak in charge struc. factor
     -  holes fluid-like (de-localized)

• At U/t=8-12, CDW develops: 
-  Peak in structure factor
-  Clumps of density=1, separated by 

dips (SDW nodes)
-  Consistent with DMRG results at 

large U/t (White et al, ’03, ’05)
-  holes Wigner-like (localized)    

Dependence on U

Sρ(k)

ρ(r)
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• Magnetic phases in repulsive Hubbard model using CPMC + TABCs
 Accurate QMC results
 No ferromagnetism in 3D up to n~0.5; paramagnetic Fermi liquid?
 Near half-filling, in 2D, at low to intermediate U/t:

 AF spin density wave (SDW) with long wavelength modulation
 Wavelength decreases with doping (infinity at half-filling)
 SDW amplitude decreases with doping, vanishes at n~0.85(5)
 Charge-charge correlation almost uniform 

 LO state in spin-imbalanced attractive optical lattice ?

Summary
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