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INTRODUCTION

Yes! We can generate synthetic gauge field in cold atoms. What then?

>> Fundamental differences between bosons and fermions under the influence
of the spin-orbit interaction, or more generally gauge fields;

S>> Novel use of the spin-orbit coupled Bose-Einstein condensate as elastic
“matter lattice”; e.g., Peierls distortion etc.

> Possibility of generating fractional charge in the system;

> Analogous transport properties in spin-orbit coupled boson system;

> Many more possibilities ...
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OUTLINE

l. General discussions on the creation of synthetic gauge
field; Generalized adiabatic principles;

Il. The NIST scheme, experimental findings and theoretical
explanation;

lll. Peierls distortion as an example of how to make use of
the spin-orbit coupled Bose-Einstein condensate;

IV. Further direction in the field; vortices, fractional charge,
transport and some speculations;
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Creating spatially varying internal eigenstates (adiabatic states); Gauge fields

appear in the basis of these internal states. f
A~ ].:)2 spin-f particles f-1 12
H = zméaﬁ_l_waﬁ(r) a,B=1,2--2f+1 f

We now find the local internal eigenstates of Wqg(r):

2f+1 i index of the internal eigenstate,

Wos(r) = Y e(r)x! (r;a)xi(r; 8) with its component given by a,.
1=1

The typical energy scale associated with the moving particleis €¢q = ,and if a

group of states i=1,2,...,L, such that

6;(r) < €q

These L-states will be mixed significantly during the particle motion and we thus obtain
an effective low energy manifold, characterized by ¥i(r),i=1,2,...,L.

2m
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To see explicitly how gauge fields arise, transform to the local adiabatic basis:
(Generalized Adiabatic Principle)

f — — —_— =2f+1
f-1 1z — -
€q
- = =2
-f I —L | —' 1=
Abelian non-Abelian
The Hamiltonian: (F.Wilczek and A.Zee, PRL 52 2111 (1984))
2f+1
~  (P+A)? o
H = E €;(r) |r;0)(r; 7
2m ,
i
A = —@'hX;f (r)Ver (r) Gauge potential (Berry connection)
€; (I‘) Space-dependent Zeeman potential

If different components of A;; do not commute » Non-abelian !
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A specific realization in NIST of the Generalized Adiabatic Principle:

Denote the internal hyperfine-Zeeman states as Fy=1,0,-1

A, = &), + Gy

G is the field gradient along y-direction

)\ — quadratic Zeeman effect

QR — Two- photon Rabi frequency

This Hamiltonian describes both abelian and non-abelian gauge fields
(spin-orbit coupling is a particular case of constant non-abelian gauge field)
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To derive the effective Hamiltonian, go to the rotating frame:
~ P2
H =
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(), =Qy —w+ Gy

e Y (—Qy Fy + AF, — QpF.)e' 1Y
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Space-independent !
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To derive the effective Hamiltonian, go to the rotating frame:

L ,—tqx Py, O 2 1qrF'y

ﬁy — QO — W _|_ Gy \ To simplify the discussion, set G=0
Space-independent !

Setting G=0 and Choose:

w= X+ {2,

We obtain two degenerate states!
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To derive the effective Hamiltonian, go to the rotating frame:

~ P2

H =
2m

ﬁy:Qo—W—FGy

m = —1
A N
\
\\\g‘2
R
2A Qg \
........ i/,’\\\\\
T = M =

Fe N (=QyFy + AF, — QpFL)e 1Y

\ To simplify the discussion, set G=0
Space-independent !
Setting G=0 and Choose:

w= X+ {2,

We obtain two degenerate states!

€q K A
SU(2) non-abelian gauge field

“a A Qp

Can neglect the coupling to m=-1 state and we
obtain an system with two internal states!
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Incidentally, one obtain the abelian field in the following way:
2
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Again, set: W = )\ —|— QO
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Incidentally, one obtain the abelian field in the following way:

(SRS — Gy) Fy +AFy — QrE

Again, set: W = )\ —|— QO

But now, we choose:

QAp > A, €q
|
_______________ g
|
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EFFECTIVE HAMILTONIAN | cont.

Incidentally, one obtain the abelian field in the following way:
2
(—QO +— W — Gy)Fy + )\Fy — QRFz
Again, set: W= A\ -+ QO

But now, we choose:

(Qrp > A €q

f Dressed state, hQ2, = 8.20EF,

d'/2x = 0.34 kHz pm™?

Momentum, k /k,
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Weiran Li and Tin-Lun Ho, to appear.
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EFFECTIVE HAMILTONIAN | cont.

Incidentally, one obtain the abelian field in the following way:
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Within the lowest two states, the effective single particle Hamiltonian is:

ﬁ2
H=—
2M

vV
7 M

I 0
0 0

2

+ h

Sl o

S Sk
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EFFECTIVE HAMILTONIAN |1

Within the lowest two states, the effective single particle Hamiltonian is:

W2 [V 1 0\] 0 2
H=—|—+3 h V2
2M7L+Xq<0 0)_*(% 0

Can be regarded as a linear
combination of Rashba and
Dresselhaus spin-orbit coupling!
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EFFECTIVE HAMILTONIAN |1

Within the lowest two states, the effective single particle Hamiltonian is:

h2
2M

T (10
P S

E1(p)

)

2 0 9=z
+h(QR ﬁ)
SE 0

Can be regarded as a linear
combination of Rashba and
Dresselhaus spin-orbit coupling!
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EFFECTIVE HAMILTONIAN |1

Within the lowest two states, the effective single particle Hamiltonian is:

H_h_2_2+>g 10
“om |7 T\ 0 o
E1(p)

2 0 9=z
th| o, Y2
SE 0

Can be regarded as a linear
combination of Rashba and
Dresselhaus spin-orbit coupling!

Symmetry properties

Xn = €7Ve " (T1) o Xom
Tuni . sinf = AM
uning parameter: — \/§th
k, = 4 cos 6

2
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EFFECTIVE HAMILTONIAN |1

Within the lowest two states, the effective single particle Hamiltonian is:

5 4 2 Q2
h: [V 1 0 0 ==
H=glz %o o )| *hl 22 ¥
1 | V2
Fq(p) Can be regarded as a linear
combination of Rashba and
Dresselhaus spin-orbit coupling!
Symmetry properties
Xn = e Ve "I (Tl)nm X;ljnj
Eo(p) Tuning parameter: sin § = 4MQR
vV 2hq?
Al B q
—ko ko k=p+3 kozgcosﬁ
2
. 0 -0
~(p ): 1COS 5 ~(p ): 1S11l 5 N(p )TN(P ) .
X P (sinf) X (Cosgz) »X+X+—81H9#O
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What is the Gross-Pitaevskii ansatz?

®, (r) = A, xE (z) + A_xE)(x)

Our task is to fix the two complex coefficients.
For that we need the full GP energy functional.
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STRUCTURE OF THE CONDENSATE |

What is the Gross-Pitaevskii ansatz? £y ()
(p+) (p-)
®,,(v) = A it (x) + A_xp ' (2)
Our task is to fix the two complex coefficients. Ey(p)
For that we need the full GP energy functional. \ v~ /
—ko ko kEp—i—%

1
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STRUCTURE OF THE CONDENSATE |

What is the Gross-Pitaevskii ansatz?

Ei(p)
p p—
P, (z) = A xE () + A_XxE) (x)
Our task is to fix the two complex coefficients. Ey(p)
For that we need the full GP energy functional. \ v~ /
—ko ko kEp—i—%

/6 :/ qginHmnén -

Note: index m and n correspond
to the original spin states m=1
and m=0, rather than the two

degenerate states at +(-) ko

1

gmn is the interaction matrix between
different spin states. For later convenience,
we define the following parameters:

9 g g

911 T 900 o = g10 8= d11 — goo
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e

Be

3, 111 »-

P, () = AL xih (x) + A_x

(p-)

m

()
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Region I: both components
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0.1 0.2 0.3 0.4
Raman coupling, /€

11 r+

05

0.6

P, (1) = A ik (2) + A_xih ) (@)

Region I: both components

Region Il & llI: single components.
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2

e

_ 911 + goo aE@ﬂ:gH_goo

g v ®,,(z) = A B (z) + A_xE) (2)

Region I: both components

Region Il & llI: single components.

2 — tan? 0 -0
Qe =
2 + tan? 6
> B. = cosH(2 — tan®0)

Tuesday, April 12, 2011



STRUCTURE OF THE CONDENSATE |1

P, (1) = A xih) () + A_xE) (x)

Region I: both components

Region Il & lll: single components.

2 — tan? 6
o, = > ()
2+ tan? @

B, = cosO(2 — tan? 0)

- 10}
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STRUCTURE OF THE CONDENSATE |1

P, (1) = A xih) () + A_xE) (x)

Region I: both components

Region Il & lll: single components.
2 — tan? 6

5 =
2+ tan“ 6
B, = cosO(2 — tan? 0)

0

e

- 10}

Note: non-zero density modulation
develops as a result of the fact:
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STRUCTURE OF THE CONDENSATE |1

_ 911+ goo :@52911—900
T — (p+) (p—)
1ot ¢, (r) = A+Xm () + A_x,2~/(x)
| Region |: both components
51
: Region Il & lll: single components.
> 0F
| 2 — tan® @ -0
: ac —
2 + tan® 0
-1of B. = cos (2 — tan® )

Note: non-zero density modulation
develops as a result of the fact:

YPHT¥P+) — gin@ £ 0
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MORE REFERENCES ON SPIN-ORBIT COUPLE BECSs:

Discussions on spin-orbit coupled BEC in the literatures, for example:

T.Stanescu, B.Anderson and V. Galitski, PRA 78, 023616 (2008)

Jonas Larson and Eric Sjoqvist, PRA 79, 043627 (2009)

Chunji Wang, Chao Gao,Chao-Ming Jian and Hui Zhai, PRL 105, 160403 (2010)
Congjun Wu and lan Mondragon-Shem, arXiv:0809.3532

S.-K. Yip, arXiv:1101.1714

Other effects related to abelian/non-abelian gauge fields:
Jaksch&Zoller, Lewenstein, Reseckas et al., Gerbier&Dalibard ...
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S0, WHAT CAN WE DO WITH IT?

Tuesday, April 12, 2011



Tuesday, April 12, 2011



We have a Bose-Einstein Condensate with density modulations:
B () = AyeTHrx (ko) + A" X (ko)
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We have a Bose-Einstein Condensate with density modulations:
B () = AyeTHrx (ko) + A" X (ko)

Boson density given by:

n](g) (x) =ng+ 24, A_sinfcos(2kox + )
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We have a Bose-Einstein Condensate with density modulations:
B () = Ay e+ THR0Tx (ko) + A_e'= 702X (ko)

Boson density given by:

ng)) (x) =ng +2AL A_sin 6 cos(2kox +©)

Sliding phase
cf. CDW
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We have a Bose-Einstein Condensate with density modulations:
Oy (x) = Ay e+ FHRTR (ko) + A_e™= 72X (ko)

Boson density given by:

ng)) (x) =ng +2AL A_sin 6 cos(2kox +©)

Sliding phase
cf. CDW
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ELASTIC “MATTER LATTICE”

We have a Bose-Einstein Condensate with density modulations:

16 tkox =~ 10_ —1koz =
Oo(z) = Ape+ T o X+ (ko) + A_e o X (ko) Sliding phase

Boson density given by: / cf. CDW

nl(g) (x) =ng +2A1L A_sin 6 cos(2kox +©)

ng ()

M

>

This looks just like the intensity field of light in the optical lattice !

Unlike the usual optical lattice, the potential can respond to
external perturbations and support its own dynamics |

Possibility of observing Peierls distortion in the system!
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Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!
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Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

¥
W
1 2 i j N
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PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

tij
¥

1 2 i J N

w =
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PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

1 2 i J N
Pi Lj
< —> < —> < —> < —> < —> <
| IS . S S S S S S e
1 2 i J N
L 1
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PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

tis

¥
1 2 i j N
1 2 i N
Consider the following dimerization pattern: ©: = (—1)*6
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PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

¥
1 2 i J N

Di P M~ |
< —>»> < —>»> < —>»> < —>»> < —>» <

1 2 ] N N

Consider the following dimerization pattern: i = (—1)*6
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PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

¥
1 2 i J N

Di P M~ |
< —>»> < —>»> < —>»> < —>»> < —>» <

1 2 ] N N

Consider the following dimerization pattern: i = (—1)*6

Peierls showed that the energy gain in the electronic I —
system is given by: B 2a 2a

—6%log 6

Tuesday, April 12, 2011

wiA



PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

¥
1 2 i J N

Di P M~ |
<— —>»> < —>»> < —>»> < —>»> < —>» <

1 2 ] N N

Consider the following dimerization pattern: i = (—1)*6

Peierls showed that the energy gain in the electronic I —
system is given by: B 2a 2a

—6%log 6

Cost of elasticity energy is given by:

52
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PEIERLS DISTORTION |

Peierls (1950s,1930s according to wiki) showed that 1D coupled electron-lattice system leads
to spontaneous distortion (dimerization) of the lattice (cf. Jone’s theory of Bismuth)!

¥ a
1 2 i | N
i Pj
< —> < —> < —> < —> < —> <
| IS . S S S S S S e
1 2 i N
Consider the following dimerization pattern: ©; = (—1)i5
Peierls showed that the energy gain in the electronic
system is given by: T T T
2 I //C\ //C\ //C\ 4
_ c” N7 7 ¢
0“ log o 7 e

Cost of elasticity energy is given by:
H H H

c C C

52 Ne” N’ N’ N

I | I I
by H H H H

polyacetylene

wiA
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o(p)
-

ko k=p+ =
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k=p+ =
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R

Initial configuration:

(I)O( ) A 629++zkoaz~ (ko)‘I‘A 620_—zk0z~ (k())

n](g) () =ng +2A; A_sinf cos(2kox + @)
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— R0

—

kEp—|——

Initial configuration:

(I)O( ) A 629++zkoaz~ (ko)‘I‘A 620_—zk0z~ (k())

n](g) () =ng +2A; A_sinf cos(2kox + @)
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Initial configuration:

(I)O( ) A 620+—|—zkoaz~ (ko)‘I‘A ezéL—zkoz’v (kO)

— R0

N

Eolp) n](;)) () =ng +2A; A_sinf cos(2kox + @)
e

0 kEp-l—g

2

Condensate structure:

D1 (2) = Ay TR (@) + AL TRy (2) + BRo(w)
D)

= ng + const. X COS(QkOx + 0, — 9_) + const. X COS(kow - 90/)
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Initial configuration:

Oy (x) = A+ HHRTN (ko) + A_e= "X (ko)

Eolp) n](;)) () =ng +2A; A_sinf cos(2kox + @)

\\éo//.lér%o/kpﬂ

Condensate structure:

Oy(z) = Ape' TN (2) + A_e= TRk (2) + BXo()

n](31) = ng + const. x cos(2kox + 0, — 0_) + const. x cos(kox + ¢©)
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PEIERLS DISTORTION |

Initial configuration:

B () = Ay et TR (ko) + At~ 702X (ko)

Eolp) ng) (x) =ng 4+ 2AL A_sin b cos(2kox + ©)

\\éo//.léé%o/kpﬂ

Condensate structure:

By(z) = Ay e®HR0T, (5) + A_e¥-—H0% 4 () + BRo(x)
n](gl) = ng + const. X cos(2kox + 0, — 0_) + const. x cos(kox + ')

energy cost for bosons:

Ae = Eo(p — O) — E()(p — ]{i())
AEB — B2A€
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PEIERLS DISTORTION Il

The fermionic sector: sees an external potential:

(1)

within mean field: V(X) — gban (X) resonant regime?

To determine the size of the effect, we solve the band structure in the potential.

4 ! ' l ' ! ' T ' l o w2
a =
b Di=2(). 2 __ gpflB
3 ' g= 5ot

The size of the gap can be
calculated in the perturbative

W ok | -
) g - limit (cf. BCS)
] i _ 1
A = 2cpe P
1 A
L | 261:‘ _ 1
b = e op
O 1| ; 1 1 : T gbrNpW
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As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'6 x f,
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As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'6 x f,

2. fermion fractionalization around the soliton.

0.5}
oofp |} 4]
~05
10k K ......... J .........
0 10 20 30 40 50
site i
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As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'6 x f,

2. fermion fractionalization around the soliton.

Band Energy

Quasi—-momentum
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FRACTIONAL CHARGE

As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'0 X f;

2. fermion fractionalization around the soliton.

Band Energy
(@)
$

0.0 — 05 10 15
Quasi—-momentum
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FRACTIONAL CHARGE

As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'0 X f;

2. fermion fractionalization around the soliton.

0.7F

0.6}

0.5}

0.3}

Band Energy
(@)
$

0.0 — 05 10 15

Quasi—-momentum
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FRACTIONAL CHARGE

As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'0 X f;

2. fermion fractionalization around the soliton.

0.7F

0.6}

0.5}

0.3}

0.7F

0.3}

Band Energy
(@)
$

Quasi—-momentum

0.6}
0.5}

0.4}
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FRACTIONAL CHARGE

As is well-known in the polyacetylene research:

1. Soliton excitations of the lattice: E(-6)= E(6)

pi = (—1)'0 X f;

2. fermion fractionalization around the soliton.

0.7F

0.6}

0.5}

0.3}

0.7F

0.3}

Band Energy
(@)
$

Quasi—-momentum

0.6}
0.5}

0.4}

Can be used as a qubit. We have demonstrate all the necessary one
qubit operation and CNOT gate !
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WHAT HAVE WE LEARNED?
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A general way of looking at light induced abelian/non-abelian gauge fields (N.B. fermions)

— — — i=2f+1

€q
— 222
— — = =1
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SUMMARY

A general way of looking at light induced abelian/non-abelian gauge fields (N.B. fermions)

~
|
)
~~
_l_
[t

f Dressed state, hQ2, = 8.20F,

NALASAS

N N .
| I
A ‘l
1 AA A
,’, , \ ) l, ’/,/ 7 ) wzﬂ_

o
Spin projection, my

VIV Y

Momentum, k/k,
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SUMMARY

A general way of looking at light induced abelian/non-abelian gauge fields (N.B. fermions)

AY
p— J— —— | t=2f+1
o | £ II
R e e AL #0,A =
c— 1 =
— — — i=1 —F —>
Ay #0 fhe L
111
Y A_£0,A, =0
b4 44844 Yo +
N N .
I o
AS | =
Bl AA > p g 0.7F
(/ /,,, \ > I\,—/,, > yfiz_ﬂ— 0 g
q a 0.6}
w ﬁ é 0.5}
- —_——- - - 1
$ VIV Y o4l
-2 0 2 ]
Momentum, k,/k, > 0 50 100 150 200
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1. Crossover from abelian to non-abelian gauge field; melting of the vortex lattice;

2. Vortices in a spin-orbit coupled Bose-Einstein condensate;

3. Transport properties of bosons with spin-orbit interactions;

4. “Matter lattice” in high dimensions; electron-phonon system (BO approx.)
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CONCLUSIONS

1. We discuss the general route to construct abelian/non-abelian gauge field.
Example: NIST experiment;

2. We worked out the phase diagram of the NIST experiment;

3. The condensate will develop appropriate density (spin) modulation in the presence of
spin-orbit coupling

4. The possibility of generating Peierls distortion and as a result, fractionalized fermion;

Tuesday, April 12, 2011



