Bragg spectroscopic studies of the contact

Chris Vale

E. Kuhnle, S. Hoinka, P. Dyke, M. Delehaye H. Hu, X-J. Liu, P. Drummond, P. Hannaford

Swinburne University of Technology, Melbourne, Australia

- Universality in interacting Fermi gases
- Bragg spectroscopy
- Measurements of the contact
- Progress towards spatially resolved Bragg spectroscopy

• Outlook

Universality in Fermi Gases

Fermionic Universality

Universality: All dilute Fermi systems with sufficiently strong interactions behave identically on a scale given by the mean interparticle spacing, independent of $U(r)$

• In 2005 Shina Tan derived several exact relations linking macroscopic and microscopic system properties through a single parameter, the contact \mathcal{C}

• Two examples of Tan relations are:

 $\frac{dE}{d(1/a)} = \frac{-\hbar^2 C}{4\pi m}$ $E-2V=-\frac{\mathcal{C}}{4\pi k_F a}$

now verified experimentally stewart *et al.*, PRL 104, 235301 (2010)

Tan, Ann Phys **323**, 2952; 2971; 2987 (2008).

• These apply to: - Superfluid / normal phases (0 or finite *T*) - Few-body / many-body systems

Punk and Zwerger, PRL **99**, 170404 (2007) Braaten and Platter, PRL **100**, 205301 (2008) Zhang and Leggett, PRA **79**, 023601 (2009) Palestini *et al*., PRA **82**, 021605(R) (2010)

Partridge *et al.*, PRL **95**, 020404 (2005) Werner, Tarruell and Castin, EPJ B **68**, 401 (2009) Son and Thompson, PRA **81**, 063634 (2010) Gandolfi *et al*., PRA **83**, 041601(R) (2011)

 C quantifies the number of closely spaced pairs!

• C depends upon :- $\frac{T}{T_F}$ and $k_F a$

Bragg Spectroscopy of Fermi gases

Bragg Scattering

- Illuminate a cloud with a "moving" standing wave
- Can scatter molecules (pairs) / atoms by selecting $ω$

 $2\hbar k_l^2$

$$
\omega_{Br} = \frac{2\pi m_l}{m}
$$

$$
\frac{\omega_{at}}{2\pi} = 294 \,\text{kHz}
$$

$$
\frac{\omega_{mol}}{2\pi} = 147 \,\text{kHz}
$$

- We obtain a Bragg spectra by:
	- (i) Measuring either - Δ*P* vs*.* ^ω - Δ*E* vs*.* ^ω **These provide the dynamic structure factor** – $S(k,\omega)$

(ii) Integrating these give *S*(*k*)

Veeravalli *et al*., PRL **101**, 250403 (2008)

Structure Factors

• The Static Structure Factor measures the integrated response at a particular momentum

$$
S(k) = \frac{\hbar}{N} \int S(k,\omega) d\omega
$$

$$
\propto \int \Delta X_{COM}(k,\omega) d\omega
$$

where the proportionality depends the 2-photon Rabi frequency which is difficult to measure accurately

 We overcome this by invoking the *f***-sum rule**

f-Sum Rule

• Particle conservation dictates *S*(*k,*ω) obeys:

$$
NE_r=\hbar^2\int S(k,\omega)\omega d\omega \quad \propto \int \Delta X_{COM}(k,\omega)\omega d\omega
$$

where the proportionality is the same as for *S*(*k*)

$$
S(k) = \frac{\hbar}{N} \int S(k,\omega) d\omega \propto \int \Delta X_{COM}(k,\omega) d\omega
$$

Combining these provides an **absolute** measure of *S*(*k*) requiring only the recoil energy, *Er*

$$
S(k) = \frac{E_r}{\hbar} \frac{\int \Delta X_{COM}(k,\omega) d\omega}{\int \Delta X_{COM}(k,\omega) \omega d\omega}
$$

Static Structure Factor

• This greatly improves the measurement accuracy of *S*(\overline{k}) through the BEC-BCS crossover

• *S*(*k*) decays from $2 - 1$ through the BEC-BCS crossover due to the decay of $g_{\uparrow\downarrow}{}^{(2)}$ (*r*), in good agreement with theory

Kuhnle *et al*., PRL **105**, 070402 (2010) Veeravalli *et al*., PRL **101**, 250403 (2008)

$$
S(k) = 1 + n \int [g^{(2)}(r) - 1] e^{-ikr} dr
$$

Universal Structure Factor

• Tan showed that the spin-up / spin-down densitydensity correlation function is given by

$$
g_{\uparrow\downarrow}^{(2)}(r) = \frac{\mathcal{C}}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) \qquad (a \gg r)
$$

• Correlation functions are generally hard to measure - BUT, we can consider the Fourier transform

$$
S(k) = 1 + n \int [g^{(2)}(r) - 1] e^{-ikr} dr
$$

Universal Pairing

• The Fourier transform of this expression gives a new universal relation for the static structure factor

$$
S_{\uparrow\downarrow}(k) = \frac{\mathcal{I}}{4Nk_F} \left(\frac{k_F}{k}\right) \left[1 - \frac{4}{\pi k_F a} \left(\frac{k_F}{k}\right)\right]
$$

• S_{\uparrow} (k) has a simple analytic dependence on (k/k_F)

Stamper-Kurn *et al*., PRL **83**, 2876 (1999) Steinhauer *et al*., PRL **88**, 120407 (2002) • *S*(*k*) can be measured experimentally using inelastic Bragg spectroscopy

$$
S(k) = S_{\uparrow\uparrow}(k) + S_{\uparrow\downarrow}(k) \cong 1 + S_{\uparrow\downarrow}(k) \quad (k \gg k_F)
$$

Combescot *et al*. EPL **75**, 695 (2006) Veeravalli *et al*., PRL **101**, 250403 (2008)

Universal $S(k)$

• To verify the universal relation we need to measure the dependence of $S(k)$ on k/k_F and $1/(k_F a)$

$$
S_{\uparrow\downarrow}(k) = \frac{\mathcal{I}}{4Nk_F} \left(\frac{k_F}{k}\right) \left[1 - \frac{4}{\pi k_F a} \left(\frac{k_F}{k}\right)\right]
$$

• Rather than change k we vary k/k_F through the density

$$
k_F = (48N)^{1/6} \sqrt{\frac{m\bar{\omega}}{\hbar}} \qquad \quad \bar{\omega} = (\omega_x \omega_y \omega_z)^{1/3}
$$

• With our crossed trap we can tune over the range $\bar{\omega} = 2\pi \times (38 \rightarrow 252) \,\mathrm{s}^{-1}$

Universal $S(k)$

• We vary k/k_F over the range $3.5 - 9.1$ and also vary B_F to achieve the desired value of $1/(k_Fa)$ for each point

Kuhnle *et al*., PRL **105**, 070402 (2010)

Contact -Interaction Dependence

ACQAC

• Our measurements of $S(k)$ with the universal relation allow us to extract the C as a function of $1/k_{F}a$...

Contact-Temperature Dependence

Contact vs. T/T_F

• Contact and *S*(*k*) are linearly related, at unitarity:

$$
S_{\uparrow\downarrow}(k) = \frac{\mathcal{I}}{4Nk_F} \left(\frac{k_F}{k}\right)
$$

 \rightarrow *S(k)* will show how C depends on temperature

• We use a modified setup for this - Bragg beams intersect at an angle of 50 $^{\circ}$ to reduce *k* - (ω_{at} = 51kHz)

T dependence of $S(k,\omega)$

· Using both the first and second moments we get two measures of $S(k, \omega)$ which average to give. In.

Contact at Unitarity

• Integrating $S(k, \omega)$ gives $S(k)$ and hence *C*

• Theory based on *t*-matrix and virial expansion

Palestini, PRA **82**, 021605(R) (2010) Hu, NJP **13**, 035007 (2010) Enss, Ann Phys. **326**, 770 (2011)

• Short-range pair correlations exist $\text{Well above } \overline{I}_{\text{c}}$ Kuhnle *et al.*, PRL **106**, 170402 (2011)

BEC and BCS

• Away from unitarity *T* is difficult to define • Instead we measure entropy after adiabatic sweep to unitarity or far BCS limits

• Δ*E* measured after long hold time

Towards Spatially Resolved Bragg Spectroscopy

• Fluctuations/drift in the cloud/trap position prior to the Bragg pulse are a dominant noise source

• However, there is a way to reduce their impact...

• We can effectively make two simultaneous measurements of *S*(*k*,ω) from a single image…

(i) $\Delta P \propto k S(k,\omega)$ (ii) $\Delta E \propto \omega S(k,\omega)$

• Quantitatively for a short Bragg pulse we have $\Delta E = \frac{m}{2} \frac{\Delta \sigma_x^2}{\tau^2}$ $\Delta P = m \frac{\Delta X_{COM}}{\tau}$

where τ is the time of flight after the Bragg pulse and

$$
\Delta X_{COM} = \langle x_f \rangle - \langle x_i \rangle
$$

\n
$$
\Delta \sigma_x^2 = \langle \sigma_{x_f}^2 \rangle - \langle \sigma_{x_i}^2 \rangle = \langle (x_f - \langle x_i \rangle)^2 \rangle - \langle \sigma_{x_i}^2 \rangle
$$

\n
$$
= \langle x_f^2 \rangle - 2\langle x_f \rangle \langle x_i \rangle + \langle x_i \rangle^2 - \langle \sigma_{x_i}^2 \rangle
$$

• We can therefore measure both the momentum and energy transferred in a single shot

• With these we can take the ratio Δ*P*/Δ*E* to eliminate $S(k,\omega)$ and find a quadratic equation for the cloud centre of mass before the Bragg pulse

$$
\frac{\Delta P}{\Delta E} = \frac{k}{\omega} \frac{S(k,\omega)}{S(k,\omega)} = \frac{2\tau(\langle x_f \rangle - \langle x_i \rangle)}{\langle x_f^2 \rangle - 2\langle x_f \rangle \langle x_i \rangle + \langle x_i \rangle^2 - \langle \sigma_{x_i}^2 \rangle}
$$

• For this to work we need:

 $k, \omega, \tau \text{ and } \langle \sigma_{x_i}^2 \rangle$

• We can obtain the initial mean square width from a reference cloud, taken with an $\omega = 0$ Bragg pulse (as the centre of mass of the reference image is known)

• Solving $\langle x_i \rangle$ for each image allows us to plot the corrected centre of mass displacement: $\langle x_{f} \rangle - \langle x_{i} \rangle$

• Improved precision lets us measure the response through different longitudinal slices of the cloud

• We also use a short time of flight so the different slices do not mix too much

• Choosing symmetric slices around the cloud centre we average over two sides to **obtain longitudinal** spectra

• "Qualitative" preliminary spectra for slices with increasing distance from the trap centre

Conclusions and Outlook

- Bragg spectroscopy provides as useful tool to study the contact in a strongly interacting Fermi gas
- We are working towards resolving the Bragg response from different spatial regions in the cloud
- A number of issues still remain before the corrected method is quantitatively accurate
- Extracting homogeneous contact...

Swinburne Fermion Team FIUR

• Improved resolution (~2.8 µm) and sensitivity

Old - side imaging

New - top imaging

Bragg Spectroscopy

• Previously measured spectra in the BEC-BCS crossover

Veeravalli *et al*., PRL **101**, 250403 (2008)