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Summary of the talk:

[1] Experimental evidence of superfluid behavior in
trapped Fermi gases across BCS-BEC crossover
⇐= vortices (MIT, Nature, June 2005)

[2] No theoretical explanation of this experiment
has been attempted thus far !

[3] Perform ab-initio calculation of vortices (T = 0)
throughout BCS-BEC crossover ⇐= need to
simplify the Bogoliubov-de Gennes equations

[4] Develop a LAPA version, more accurate for
phase (P) than for amplitude (A) of local gap

[5] Rotation activates an “Orbital Breached-Pair
Phase” on the BCS side of unitarity.
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This work is:

♣ Done in collaboration with S. Simonucci

and P. Pieri (Camerino)

♣ Still in progress (unpublished)

♣ Possibly amenable to extensions and

useful for diverse physical problems.
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The MIT experimental paper (2005):



Selection of experimental vortices:

selection.pdf



... and its fancy version:



Main experimental results:
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Theoretical approach: The BdG equations(
H(r) ∆(r)
∆(r)∗ −H(r)∗

)(
uν(r)
vν(r)

)
= εν

(
uν(r)
vν(r)

)

H(r) = −∇2/(2m) + iA(r) · ∇/m + V (r)− µ
V (r) = trapping potential

A(r) = m Ω× r = “vector potential”(rotat. frame)

µ = chemical potential

∆(r) = local gap function, determined by

∆(r) = g
∑
ν

uν(r)vν(r)∗ [1− 2fF (εν)]

fF (ε) = (eε/(kBT ) + 1)−1 = Fermi function (T → 0+)
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Their implementation for vortex patterns:

• Implementation of BdG equations for a single
vortex is OK [Sensarma, Randeria, and Ho,
PRL 96, 090403 (2006)] ...

• But for many (≈ 50) vortices it is challenging !
[see Castin et al. (2006), but only in BCS limit]

• Typically, with ≈ 106 particles =⇒ diagonalize
≈ 107 × 107 matrices to obtain {uν(r), vν(r)}

• Computer time ≈ 104 hours / convergence cycle

=⇒≈ 106 hours are needed for 100 iterations !

• Thus for many vortices an alternative procedure
is strongly needed !
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Generalized Gross-Pitaevskii equation:

• Express BdG eqs. in terms of Green’s functions :

−G21(r, r′;ωn) =

∫
dr′′G̃0(r′′, r;−ωn)∆(r′′)∗G11(r′′, r′;ωn)

where ωn = (2n + 1)π/β (n integer) and

[iωn − H(r)] G̃0(r, r′;ωn) = δ(r − r′)

with

∆(r)∗

g
= −1

β

∑
n

e iωnη G21(r, r;ωn)
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Two entangled coarse-graining procedures:

• Write ∆(r′′) = ∆̃(R) e2i q(R,τ)·(R+τ+ρ)

with r′′ = R + τ + ρ
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A “local” Fulde - Ferrel phase:

• Treat the small (green) volume as it were a

homogeneous system with a Fulde-Ferrel phase
of wave vector q = q(R, τ):

G11(k, ωn|q) =
u(k|q)2

iωn − E+(k|q)
+

v(k|q)2

iωn + E−(k|q)

u(k|q)2

v(k|q)2

}
=

1

2

(
1± ξ(k|q)

E (k|q)

)

ξ(k|q) =
k2

2m
−µ+

q2

2m
−A · q

m
, E (k|q) =

√
ξ(k|q)2 + |∆(q)|2

E±(k|q) = E (k|q) ± k

m
· (q− A) , E−(k|q) = E+(−k|q)
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An Orbital Breached - Pair Phase:

• Note that E+(k|q) < 0 for k1 ≤ |k| ≤ k1 with

k1,2(q)2

2m
=

(q− A)2

2m
+

(
µ +

A2

2m

)
±

√
4

(q− A)2

2m

(
µ +

A2

2m

)
− |∆|2

• Occupation number:

n(k|q) = u(k|q)2 fF (E+(k|q))

+ v(k|q)2 [1− fF (E−(k|q))]

=⇒ n(k|q) = 1 if E+(k|q) < 0 !
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Schuck, but with q = 0 ⇐⇒ NO vortices :
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The Werthamer approach - PR (1963) :

• Aimed at extending the Gorkov’s derivation of
the Ginzburg-Landau (GL) equations far from
Tc , but still in the BCS (weak-coupling) limit

• Similar in spirit to ours: The phase of ∆(r)
varies more rapidly than its amplitude

• But, does not extend to the BEC side and
misses the breached-pair phase on the BCS side
(it treats the vector potential as a perturbation)

• Yet, we can compare with and recover his
(formal) results for the extended GL equations.
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· · · after some manipulations · · ·

· · · we end up with a generalized Gross-Pitaevskii
equation for the local gap function ∆(r) throughout
the BCS-BEC crossover, under some (moderate)
local “phase & amplitude” assumptions:

− m

4πaF
∆(r) = I0[∆(r)|r] ∆(r) + I1[∆(r)|r]

∇2

2m
∆(r)

− I1[∆(r)|r]
A(r)

m
· ∇∆(r)

where I0[∆(r)|r] and I1[∆(r)|r] are local
functionals of ∆(r) :
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Test G-GPE with 1 vortex BEC → BCS:
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G-GPE: Results for vortex patterns - 1
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G-GPE: Results for vortex patterns - 2
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G-GPE: Results for vortex patterns - 3
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G-GPE: Results for vortex patterns - 4
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Implementing G-GPE for vortex patterns:

• Discretize 3D space (typically, 201× 201× 41 points
for a cigar-shape trap)

• Discretize the operators ∇ and ∇2 accordingly

• Reduce the nonlinear G-GPE to a system of the type: F1(∆1, · · · ,∆N ) = 0
· · ·

FN (∆1, · · · ,∆N ) = 0

where ∆j = ∆(xj , yj , zj) with j = (1, · · · ,N ).

• Solve this system with Newton’s method, using as “initial
condition” the ansatz:

∆
(0)
j = ∆TF (µ− V (xj , yj , zj); aF )

×
Nv∏
v=1

[(xj − Xv ) + i(yj − Yv )]√
r 2
v + (xj − Xv )2 + (yj − Yv )2
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where

∆TF (µ− V (xj , yj , zj); aF ) is the Thomas-Fermi result;

{Xv,Yv} are the initial positions of the vortices in the
x − y plane (use a triangular mesh with size given by
the Feynman’s theorem);

rv is the vortex size (∼= k−1
F when −1

<∼ (kFaF )−1 <∼ +1)

• Typically, each iteration (Newton method) takes ≈ 15sec

• Less than 103 iterations are needed for given coupling

• About one hour is enough to obtain ∆(r) and related
quantities for given coupling (recall that the corresponding
estimated time with the full BdG equations was ≈ 106

hours !!!).
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Three types of calculations:

• Exclude the Orbital Breached-Pair Phase

• Include the Orbital Breached-Pair Phase

• To compare with experiment, introduce in
addition a “visibility filter” in the density profile

(typically, a sharp cut is applied at the edge
of the cloud where the density is reduced, say,
to 10% of the trap center).



Three types of calculations:

• Exclude the Orbital Breached-Pair Phase

• Include the Orbital Breached-Pair Phase

• To compare with experiment, introduce in
addition a “visibility filter” in the density profile

(typically, a sharp cut is applied at the edge
of the cloud where the density is reduced, say,
to 10% of the trap center).



Three types of calculations:

• Exclude the Orbital Breached-Pair Phase

• Include the Orbital Breached-Pair Phase

• To compare with experiment, introduce in
addition a “visibility filter” in the density profile

(typically, a sharp cut is applied at the edge
of the cloud where the density is reduced, say,
to 10% of the trap center).



Three types of calculations:

• Exclude the Orbital Breached-Pair Phase

• Include the Orbital Breached-Pair Phase

• To compare with experiment, introduce in
addition a “visibility filter” in the density profile

(typically, a sharp cut is applied at the edge
of the cloud where the density is reduced, say,
to 10% of the trap center).



Three types of calculations:

 0

 10

 20

 30

 40

 50

 60

 70

 80

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5

N
v

1/(kF a)

=0.3 r   ,   N=2x106

Superfluid
Superfluid+Normal

Superfluid+Normal+Visibility cut 10%



Comparison with MIT experiment:

To compare with MIT experiment, play a little bit with the:

(i) Effective rotational frequency of the trap (Ωeff
<∼ Ωnominal)

(ii) Total particle number N =⇒
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Possible extensions of the LAPA method:

♣ Recover the Ginzburg-Landau equations in the
weak-coupling BCS limit close to Tc [check]

♣ Introduce imbalanced spin populations and look
for FFLO phases in definite geometries [feasible]

♣ Try to introduce correlations beyond mean field
at least in non-kinetic terms [reasonable]

♣ Set up a time-dependent version [≈ dream]

♣ Compare with poly-tropic version(s) of GP eqn.
across the BCS-BEC crossover (↔ power-law
dependence of chemical potential on density) [?]

♣ Suggestions would be welcome !
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Where G-GPE works in the phase diagram:
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Thomas-Fermi vs Generalized GPE
(Ω = 0, unitarity limit):
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