Vortex lattices throughout
the BCS-BEC crossover

G.C. Strinati

Dipartimento di Fisica, Universita di Camerino

Program INT-11-1 on:

“Fermions from Cold Atoms to Neutron Stars:
Benchmarking the Many-Body Problem”
Institute for Nuclear Theory, Seattle (U.S.A.),
March 14-May 20, 2011.



Summary of the talk:



Summary of the talk:

[1] Experimental evidence of superfluid behavior in
trapped Fermi gases across BCS-BEC crossover
<= vortices (MIT, Nature, June 2005)



Summary of the talk:

[1] Experimental evidence of superfluid behavior in
trapped Fermi gases across BCS-BEC crossover
<= vortices (MIT, Nature, June 2005)

[2] No theoretical explanation of this experiment
has been attempted thus far !



Summary of the talk:

[1] Experimental evidence of superfluid behavior in
trapped Fermi gases across BCS-BEC crossover
<= vortices (MIT, Nature, June 2005)

[2] No theoretical explanation of this experiment
has been attempted thus far !

[3] Perform ab-initio calculation of vortices (T = 0)
throughout BCS-BEC crossover <= need to
simplify the Bogoliubov-de Gennes equations



Summary of the talk:

[1] Experimental evidence of superfluid behavior in
trapped Fermi gases across BCS-BEC crossover
<= vortices (MIT, Nature, June 2005)

[2] No theoretical explanation of this experiment
has been attempted thus far !

[3] Perform ab-initio calculation of vortices (T = 0)
throughout BCS-BEC crossover <= need to
simplify the Bogoliubov-de Gennes equations

[4] Develop a LAPA version, more accurate for
phase (P) than for amplitude (A) of local gap



Summary of the talk:

[1] Experimental evidence of superfluid behavior in
trapped Fermi gases across BCS-BEC crossover
<= vortices (MIT, Nature, June 2005)

[2] No theoretical explanation of this experiment
has been attempted thus far !

[3] Perform ab-initio calculation of vortices (T = 0)
throughout BCS-BEC crossover <= need to
simplify the Bogoliubov-de Gennes equations

[4] Develop a LAPA version, more accurate for
phase (P) than for amplitude (A) of local gap

[5] Rotation activates an “Orbital Breached-Pair
Phase” on the BCS side of unitarity.
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& Done in collaboration with S. Simonucci

and P. Pieri (Camerino)

& Still in progress (unpublished)

& Possibly amenable to extensions and

useful for diverse physical problems.



The MIT experimental paper (2005):
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Vortices and superfluidity in a strongly
interacting Fermi gas

M. W. Zwierlein’, J. R. Abo-Shaeer't, A. Schirotzek', C. H. Schunck' & W. Ketterle!

Quantum degenerate Fermi gases provide a remarkable opportunity to study strongly interacting fermions. In contrast to
other Fermi systems, such as superconductors, neutron stars or the quark-gluon plasma of the early Universe, these
gases have low densities and their interactions can be precisely controlled over an enormous range. Previous
experiments with Fermi gases have revealed condensation of fermion pairs. Although these and other studies were
consistent with predictions assuming superfluidity, proof of superfluid behaviour has been elusive. Here we report
observations of vortex lattices in a strongly interacting, rotating Fermi gas that provide definitive evidence for
superfluidity. The interaction and therefore the pairing strength between two SLi fermions near a Feshbach resonance
can be controlled by an external magnetic field. This allows us to explore the crossover from a Bose-Einstein condensate
of molecules to a Bardeen-Cooper-Schrieffer superfluid of loosely bound pairs. The crossover is associated with a new
form of superfluidity that may provide insights into high-transition-temperature superconductors.
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Main experimental results:
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Theoretical approach: The BdG equations
H(r)  A(r) u(r)\ _ o u(r)
(& S ) (i) == (o)
H(r) = —V2/(2m) + iA(r) - V/m+ V(r) — p

V/(r) = trapping potential
A(r) = mSQ x r = "vector potential”’ (rotat. frame)

{1t = chemical potential
A(r) = local gap function, determined by

=gy u(v(n L - 2f(e)]

fe(e) = (e/t&T) +1)~! = Fermi function (T — 0%)
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Their implementation for vortex patterns:

Implementation of BdG equations for a single
vortex is OK [Sensarma, Randeria, and Ho,
PRL 96, 090403 (2006)] ...

But for many (= 50) vortices it is challenging !
[see Castin et al. (2006), but only in BCS limit]

Typically, with ~ 10° particles == diagonalize
~ 107 x 107 matrices to obtain {u,(r), v,(r)}

Computer time = 10* hours / convergence cycle
— ~ 10° hours are needed for 100 iterations !

Thus for many vortices an alternative procedure
is strongly needed !
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e Express BdG egs. in terms of Green’s functions :
—Goi(r, v wny) = /dr”QNO(r”, v, —wn) A() G (", v wy)
where w, = (2n+ 1)/ (n integer) and

[iw, — H(r)] Golr,¥;w,) = 6(r — 1)

with
A(r)*
g

1 .
— _B Z e'“nl ggl(r, r, wn)
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o Write A(Y") = A(R) 21 a(R7)-(R74p)
with v =R +7+p
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A “local” Fulde - Ferrel phase:

e Treat the as it were a

homogeneous system with a Fulde-Ferrel phase
of wave vector q = q(R, 7):

u(k|q)? v(k|q)?
— Ey(klg)  iw,+ E_(k|q)

1) 50

g11(k wn“l)

s(kla) = o ——pto ————= . E(kla) = v&(kla? + [Aa)

Ec(kla) = E(Kla) = = -(a—A) . E_(kla) = E.(~kla)
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e Note that £, (k|q) < 0 for k; < |k| < k; with
kia(@) _ (a—A)? +( Az)

2m 2m M+%

— A)2 A2
+ \/4(q2 ) (;H——)—]AP
m 2m




An Orbital Breached - Pair Phase:

e Note that £, (k|q) < 0 for k; < |k| < k; with
kia(@) _ (a—A)? +( A2>

2m a 2m ’ujL%

— A)2 A2
+ \/4((]2 ) (;H——)—]AP
m 2m

e Occupation number:

n(kla) = u(kla)® f=(E.(k|q))
+ v(klq)* [1 — fr(E_(k|q))]

—  n(klg)=1 if E.(kl]q)<0 !
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A related problem was considered by Urban and
Schuck, but with g =0 <= NO vortices :

RAPID COMMUN]

PHYSICAL REVIEW A 78, 011601(R) (2008)

Pair breaking in rotating Fermi gases

Michael Urban' and Peter Schuck'”
Unstitur de Physique Nucléaire, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay Cedex, France
*Laboratoire de Physique et Modélisation des Miliewx Condensés, CNRS and Université Joseph Fourier, Maison des Magistéres,
Boite Postale 166, 38042 Grenoble Cedex, France
(Received 17 April 2008; published 9 July 2008)

We study the pair-breaking effect of rotation on a cold Fermi gas in the BCS-BEC crossover region. In the
framework of BCS theory, which is supposed to be qualitati correct at zero temp we find that in a
trap rotating around a symmetry axis, three regions have to be distinguished: (A) a region near the rotational
axis where the superfluid stays at rest and where no pairs are broken, (B) a region where the pairs are
progressively broken with increasing distance from the rotational axis, resulting in an increasing rotational
current, and (C) a normal-fluid region where all pairs are broken and which rotates like a rigid body. Due to
region B, density and current do not exhibit any discontinuities.

DOL: 10.1133/PhysRevA.78.011601 PACS number(s): 03.75.Kk, 03.75.Ss, 67.85.De, 67.85.Lm
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The Werthamer approach - PR (1963) :

e Aimed at extending the Gorkov's derivation of
the Ginzburg-Landau (GL) equations far from
T, but still in the BCS (weak-coupling) limit

e Similar in spirit to ours: The phase of A(r)
varies more rapidly than its amplitude

e But, does not extend to the BEC side and
misses the breached-pair phase on the BCS side
(it treats the vector potential as a perturbation)

e Yet, we can compare with and recover his
(formal) results for the extended GL equations.
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after some manipulations

- we end up with a generalized Gross-Pitaevskii
equation for the local gap function A(r) throughout
the BCS-BEC crossover, under some (moderate)
local “phase & amplitude” assumptions:

_472F A(r) = Zo[A()|r] A(r) + Ti[A(r)]r] ;—mA(r)
— T[A(r)|r] % - VA(r)

where Z[A(r)|r] and Z:[A(r)|r] are local
functionals of A(r) :
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length ag = 2ar in the rotating frame :



In the BEC limit (|A] < |p|):

m m?ar m3ad
To[A — 5 —2V(r) — —E |A(r) 2
AWM — — e+ T (e 2V(6) = T 1A()
mQaF
LA@I] — 7

=  one recovers the Gross-Pitaevskii equation
for composite bosons of mass mg and scattering
length ag = 2ar in the rotating frame :

- %Cb(r) + 2':753) Vo(r) + 2V(r) d(r)
471'33
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Additional local quantities :
e The density:

(% - /t(r))
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e The density:
ST R € 0)
o (& —n0) 2 +180P

k2(q=0) dk k2 1 m
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Additional local quantities :

e The density:
ST R € 0)
o (& —n0) 2 +180P

k2(q=0) dk k2 1 m
+ ok (o = () -
/kl(qO) 2m? (2m > L/(gk,i/f(r))2+A(r)2 kA(r)]
e The current (here A(r) = |A(r)|e*):
s = 2 (T )

n(r) =

m 2
N ;/(2"7:_‘)3k fr[E+ (k; Vo (r), A(F)]

E. (ki Vi(r). Ar)) = % (35— #0) 2+ 18002 + £ (Y5 - a)
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Implementing G-GPE for vortex patterns:

e Discretize 3D space (typically, 201 x 201 x 41 points
for a cigar-shape trap)

e Discretize the operators V and V2 accordingly

e Reduce the nonlinear G-GPE to a system of the type:

fl(Alf" 7AN):0

fN(Alv"' aAN):O
where A; = A(x;, yj, z) with j = (1,--- ,N).

e Solve this system with Newton's method, using as “initial
condition” the ansatz:

AJ(-O) = Arr(p— V(x,¥,7); ar)
N,

" [(xi = X) +i(y; = V)]
VHl VIZ+ (=X )2+ (y — V)2
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where
Are(p — V(X y), z); ar) is the Thomas-Fermi result;

{Xy, Y, } are the initial positions of the vortices in the
x — y plane (use a triangular mesh with size given by
the Feynman's theorem);

ry is the vortex size (=2 k7! when —1 < (krag)™' < +1)
e Typically, each iteration (Newton method) takes ~ 15sec
e Less than 103 iterations are needed for given coupling

e About one hour is enough to obtain A(r) and related
quantities for given coupling (recall that the corresponding
estimated time with the full BdG equations was ~ 10°
hours !11).
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Three types of calculations:

e Exclude the Orbital Breached-Pair Phase
e Include the Orbital Breached-Pair Phase
e To compare with experiment, introduce in

addition a “visibility filter” in the density profile

(typically, a sharp cut is applied at the edge
of the cloud where the density is reduced, say,
to 10% of the trap center).



Three types of calculations:
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To compare with MIT experiment, play a little bit with the:

(i) Effective rotational frequency of the trap (s S Quominal)

(i) Total particle number N ==
Visibility cut 10%
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Suggestions would be welcome !
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This approximation has been tested to work well
for a single vortex.

It has made possible also solutions with large
vortex patterns.

The presence of “Orbital Breached-Pair Phase”
has been evidenced in the MIT experiment.

Future applications: moment of inertia , - - -

Thank you for your attention !



Where G-GPE works in the phase diagram:
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Thomas-Fermi vs Generalized GPE
(€2 = 0, unitarity limit):
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