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Summary

1. Some systems in nature are remarkable in that they are
crystalline as well as superfluid

2. Discuss the low energy theory for such systems

3. Relation of the low energy coefficients (LECs) of the
lagrangian to thermodynamic derivatives

4. (Cirigliano, Reddy, Sharma. arXiv:1102.5379)

5. Application to the crystalline superfluids (LOFF phases)
(preliminary)

6. Neutron star crust



Low energy fields

1. One Goldstone mode is associated with the phase modulation
of the condensate 〈ψ1ψ2〉 ∝ |∆|e−2iφ(x)

2. The second set of Goldstone modes is associated with
translations and are the lattice phonons ξa(x)

3. Symmetries require invariance under constant shifts
I φ(x)→ φ(x) + θ
I ξa(x)→ ξa(x) + ba



The effective action
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cδab) is the traceless part of the
strain tensor

3. An interesting feature is the mixing between the φ and the
longitudinal lattice mode

4. The LECs can be related to derivatives of the free energy Ω
with respect to external fields (for eg. the chemical potential
µ). We call this thermodynamic matching



Thermodynamic matching for pure superfluid

1. (Son, Wingate (2006))

2. L = Lv [ψ] + (µ+ m)ψ†ψ

3. Slightly more general form L = Lv [ψ] + Aµ(x)jµ

4. For constant Aµ(x) = Āµ = (µ+ m, 0) we get back the
standard grand canonical picture, but in the intermediate
stages we keep the external field general

5. Action invariant under gauge transformations
ψ → ψ exp(iθ(x)), Aµ → Aµ − ∂µθ



Thermodynamic matching

1. Z [A(x)] =
∫

[dψ]e i
∫

d4xL

2. Doing the path integral in two steps. First integrating out the
high energy fields, and obtain an effective lagrangian for φ

3. Then Z [A(x)] =
∫

[dφ]e iLeff [φ,A]

4. The combination Dµφ = ∂µφ+ Aµ is invariant under gauge
transformations

5. The invariant building block X = DµφD
µφ

6. Write the lagrangian as Leff(φ,Aµ) = f (Y ) + ... where
Y =

√
X −m, and ... represents terms with more derivatives

than fields

7. For constant Aµ(x) = Āµ, 1. gives Z [Ā] = e−iΩVT



Thermodynamic matching

1. Alternatively, we can expand the effective action about the
classical solution φ0 = 0. φ = φ0 + ϕ(x)

2. e if (µ)VT
∫
d [ϕ]e

i
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d4xd4x ′ϕ(x)ϕ(x ′)
∂2Leff

∂φ(x)∂φ(x′)
+...

3. The loop corrections are zero for constant external fields
because there is always a derivative acting on the external field

4. Therefore f (Y ) = −Ω(µ = Y ) = P(µ = Y )

5. for eg. (Son, Wingate (2006))



Hydrodynamics of the Goldstone mode

1. For a slowly varying field ϕ we can expand in ∂ϕ about the
equilibrium point

2. Taking the non-relativistic limit
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The procedure

1. Identify the conserved current for the spontaneously broken
global symmetry

2. Couple an external field to the conserved current, and
promote the global symmetry to a local symmetry

3. Write a low energy lagrangian for the fields invariant under
the local symmetry

4. For constant external fields this coincides with −Ω

5. Perform a gradient expansion



Matching for superfluid and crystal

1. The conserved charge associated with translations is the stress
tensor

2. The external fields are the spatial components of the external
metric gab

3. To make invariant combinations it is useful to introduce the
body fixed coordinates za = xa − ξa(x) (Leutwyler 1997, Son
2002)

4. There are three invariant combinations
I Y =

√
DµφDµφ−m

I W a = ∂µz
aDµφ

I Hab = ∂µz
a∂µzb



Matching for superfluid and crystal

1. Leff(φ, ξa,Aµ, gµν) = f (Y ,W a,Hab) + ...

2. There are also terms that change by a total derivative on
making gauge transformations

εµνσλεabc
(
C1 Aµ + C2 ∂µφ

)
(∂νz

a∂σz
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c )

3. For constant gab(x) = ḡab and Aµ(x) = Ãµ = (µ+ m,A) the
action at the classical solution at φ = 0, and ξa = 0 is the free
energy

4. A new feature is that we need to allow for A 6= 0

5. For constant external fields, the variables give Y0 = µ,
W a

0 = Aa, Hab
0 = ḡab

6. f (Ã0,A, ḡab) = −Ω(Ãµ, ḡab) = −E(Ãµ, ḡab) + Ãµj
µ



Quadratic lagrangian

1. Expanding near the equilibrium, Y = µ, W a = 0, Hab = −δab

and keeping only the quadratic terms
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The mixing parameter and entrainment

1. nb = m ∂2f
3∂W c∂W c is the density of the superfluid that is

entrained on the lattice

2. Related to the change in energy associated with relative
motion between the superfluid and the lattice. To see that,
note that in the non-relativistic limit
W a ∼ mn(− 1

mn
∂aφ− ∂0ξ

a + 1
m∂iφ∂iξ

a)



Hab

1. Hab ≡ ηab − (∂aξb + ∂bξa) + ∂µξ
a∂µξb is related to the

deformations of the crystal

2. In the case where one conserved species (p) forms the lattice
and the second species (n) is superfluid, δHcc = − 1

np
δnp and

therefore gmix = 1
fφ
√
ρ [nb − np

∂nn
∂np

]



Relating g ab to deformations

1. The gab = Hab ≡ ηab − (∂aξb + ∂bξa) + ∂µξ
a∂µξb, relates

the external metric to the deformation

2. The elastic constants are given by,
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1

3
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µ = µ̄− P

where, P = −1
3〈T

a
a 〉 is the trace of the stress tensor
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4. µ̄ = ( 2
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Application to LOFF phases

1. Asymmetric Fermi gases for (µ1 − µ2) = 2δµ 6= 0

2. Weak coupling, mean field analysis to get qualitative
understanding

3. ∆(x) = ∆
∑
{qa} e

i2qa·r

4. LOFF phases (Larkin, Ovchinnikov; Fulde, Ferrell) are possible
ground states for δµ ∼ [0.707, 0.754]∆0, where ∆0 is the gap
in the symmetric phase

5. For simple lattice structures there is a second order phase
transition from the normal phase to the LOFF phase at
δµ = 0.754∆0



Application to LOFF phases

1. We do the calculation for a cos(2qz) condensate

2. A Ginzburg-Landau expansion in ∆ can be used near the
second order transition

3. |qa| is chosen to minimize the free energy. |qa|vf = ηδµ with
η ∼ 1.2



LECs in the LOFF phase

1. Lψ =

( ψ†1 ψ2 )

[
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2. In this case more convenient to compute the free energy in
the deformed state: r→ r + ξ(r)



LECs in the LOFF phase

1. For the cos condensate, one lattice phonon ξz

2. Expand to the second order in ξ since we want the quadratic
lagrangian

2∆ cos
(
2q(z − ξ)

)
∼ 2∆[cos(2qz)− 2qξ sin(2qz)

−4q2ξ2 cos(2qz)]

3. Integrating out the fermions still difficult beccause a space
dependent condensate

4. Simplify further by making a Ginzburg Landau expansion in
∆, (Mannarelli, Rajagopal, Sharma (2007))



LECs in the LOFF phase

1. L = 1
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4. The mixing is parameterically small near the second order
point, but may be important when ∆ is larger

5. Requires a more careful consideration of gapless fermions



The neutron star inner crust

(Negele Vautherin (1973))



LECs in the neutron star crust

1. Model the system as clusters of protons localized on lattice
sites, with some neutrons (nb) bound or entrained on the
sites, and the rest (nf = nn − nb) unbound

2. gmix = 1
fφ
√
ρ [nb − np

∂nn
∂np

]

3. Use nuclear mass fomulae to obtain a rough estimate for nn

and np as a function of density

4. We take nb as the density of bound neutrons in the
Wigner-Seitz approximation

5. The second contribution is estimated by noting that
np

∂nn
∂np
∼ npf

2
φ Ṽnp. For typical values of Ṽnp, the first term

dominates over the second term



Mixing in the neutron star crust



Conclusions and future work

1. The LECs can be calculated from the thermodynamic
properties of the systems. Generalizations of “susceptibilities”

2. The existence of a phase with two modes with different
dispersions that mix with each other could affect
hydrodynamic oscillations

3. For future work, a more careful calculation of the elastic and
mixing parameters
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