Florian Schreck

Quantum-Degenerate Strontium

Institute for Quantum Optics and Quantum Information

Innsbruck, Austrie

Alkaline-earth elements

Alkali atoms: one valence electron

OAW

Overview

What's new?

Properties and opportunities of alkaline-earth elements

Achieving quantum degeneracy:

BECs and Fermi sea of strontium

New tools for new quantum gases: nuclear spin manipulation of ⁸⁷Sr

SU(N) magnetism

Hermele, Gurarie, and Rey 2009

Artificial gauge fields

Gerbier and Dalibard 2010 Cooper 2011

Quantum computation schemes

Stock, Babcock, Raizen, and Sanders 2008 Daley, Boyd, Ye, and Zoller 2008

RbSr ground-state molecules

SU(N) magnetism

Fermionic alkaline-earth atom (e.g. ⁸⁷Sr):

electronic and nuclear spin NOT coupled

 scattering properties independent of nuclear spin orientation but for fermionic statistics

leads to SU(N) spin symmetry!

⁸⁷Sr on lattice: study SU(10) magnetism

Ground state of $SU(\infty)$ is chiral spin liquid

Hermele *et al.*, PRL **103**, 135301 (2009) Gorshkov *et al.*, nature physics **6**, 289 (2010)

Artificial gauge fields

Example:

Quantum simulation of charged particles in strong magnetic fields to observe e.g. quantum Hall effect

Challenge:

We work with **neutral** atoms \rightarrow need to simulate effect of B-field on electrons

Ian Spielman's group using rubidium:

• B-field proportional to length of sample

nature 426, 628 (2009)

Alkaline-earth:

- B-field proportional to **surface** of sample
- lattice geometry

Gerbier and Dalibard, New J. Phys. **12,** 033007 (2010) Cooper, PRL **106**, 175301 (2011) Górecka, Grémaud, and Miniatura, arXiv:1105.3535

RbSr ground-state molecules

Have electric (1.5 Debye) and magnetic (1 µB) dipole moment

(So far only electric or magnetic dipole moment)

Leads to anisotropic, long-range interactions that are **spin dependent**!

Simulation of lattice-spin models

Micheli et al., nature physics 2, 341 (2006)

Overview

What's new?

Properties and opportunities of alkaline-earth elements

Achieving quantum degeneracy:

BECs and Fermi sea of strontium

New tools for new quantum gases: nuclear spin manipulation of ⁸⁷Sr

2000: ⁸⁸Sr at phase-space density of 0.1

PHYSICAL REVIEW A, VOLUME 61, 061403(R)

Optical-dipole trapping of Sr atoms at a high phase-space density

Tetsuya Ido,¹ Yoshitomo Isoya,¹ and Hidetoshi Katori^{1,2}

2006: cooling of ⁸⁸Sr/⁸⁶Sr mixture to phase-space density of 0.06

PHYSICAL REVIEW A 73, 023408 (2006)

Cooling of Sr to high phase-space density by laser and sympathetic cooling in isotopic mixtures

G. Ferrari, R. E. Drullinger, N. Poli, F. Sorrentino, and G. M. Tino*

Bosonic strontium isotopes:

Isotope	Natural abundance	Scattering length	
888	82.58 %	-2 a ₀	
86 C r	9.86 %	+800 a ₀	
⁸⁴ Sr	0.56 %	?	

no collisions

inelastic collisions

Bosonic strontium isotopes:

narrow linewidth MOT

1.5×10^5 atoms in pure BEC!

See also work by Tom Killian's group

⁸⁴Sr BEC today

2009:

2011:

imaged on resonance

imaged off resonance

1.5 x 10⁵ atoms

4 x 10⁶ atoms

a 25-fold improvement!

Reasons:

- larger dipole trap
- intercombination line laser with narrower linewidth
- better dipole trap loading

Bosonic strontium isotopes:

Isotope	Natural abundance	Scattering length	
⁸⁸ Sr	82.58 %	-2.5 a ₀	no collisions
⁸⁶ Sr	9.86 %	800 a ₀	> inelastic collisions
⁸⁴ Sr	0.56 %	123 a ₀	

Need: inelastic collision rate $\Gamma_{inel} \ll$ elastic collision rate Γ_{el}

Improve elastic to inelastic collision ratio by lowering density → large volume dipole trap ⁸⁶Sr BEC

OAW

5000 atoms in BEC

Bosonic strontium isotopes:

	lsotope	Natural abundance	Scattering length	
4	⁸⁸ Sr	82.58 %	-2 a ₀	no collisions
	⁸⁶ Sr	9.86 %	800 a ₀	inelastic collisions
	⁸⁴ Sr	0.56 %	123 a ₀	

Tom Killian's group (2010): use sympathetic cooling with ⁸⁷Sr

 $a_{87-88} = 55 a_0$

⁸⁸Sr BEC

ΔW

5000 atoms in BEC

$$a_{88} = -2 a_0$$

BEC limited to finite atom number

$$N_{critical} = 5000$$

Quantum computation / simulation

Fermionic ⁸⁷Sr

Quantum computation / simulation

Challenge:

identical fermions don't collide at ultracold temperatures

Solutions:

- ⁸⁷Sr in spin mixture *Tom Killian's group*
- ⁸⁷Sr in single spin state & ⁸⁴Sr our group

narrow linewidth MOTs

Evaporation

OAW Austrian Academy

BEC & Fermi sea

AW

Degenerate Fermi Gas of ⁸⁷Sr

AW

Quantum simulation / computation

Alkalis: e.g. magnetic Stern-Gerlach separation not possible with alkaline-earths

Alkaline-earths:

group (Sr, 2007): spectroscopy (using ,clock' – transition) Takahashi group (Yb, 2010): optical Stern-Gerlach separation

Mlynek (He* beam, 1992)

Working principle:

accelerate atoms using m_F - state dependent light shift gradient

in-situ

optical Stern-Gerlach

Optical pumping

OAW Austrian Academy

No spin relaxation after 1000 collisions!

Achieved quantum degeneracy with all isotopes

Nuclear spin manipulation of ⁸⁷Sr

Quantum computation / simulation

The future

SrRb ground state molecules

The team

Former members:

Bo Huang

Meng Khoon Tey

StartAustrian ministry2010of science

Der Wissenschaftsfonds.

