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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

“...changes in the distribution with time are 
attributable to known loss and heating”

with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.

in the study of non-equilibrium quantum dynamics
In summary, we have watched the time evolution of non-equi-

librium trapped 1D Bose gases, which are almost integrable systems.
We find no evidence of redistribution of momentum, from the Tonks–
Girardeau gas limit to the intermediate coupling regime. That is, we
observe thousands of parallel 1D Bose gases, each with hundreds of
atoms colliding thousands of times without approaching equilibrium.
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• is relaxation due to deviations from the integrability 
indeed negligible compared with other mechanisms 
of losses?

• if inelastic relaxation is strong, why it was not 
observed??



BEC transition at a finite temperature

εk

k∼ms

ωs =
ms2

2

ξk = k2/2msk

Elementary excitations:  Bogolubov’s quasiparticles

Rate of relaxation by 2-body collisions:

Γk ∝ max
{
ε5k, ε

4
kT

}
for k " ms

independent of either k or T for k ! ms
(thus insensitive to BEC)Beliaev (1958)

Andreev and Khalatnikov (1963)
Hohenberg and Martin (1965)

3D



Relaxation is due to 3-body collisions 

εk

k∼ms

ωs =
ms2

2

ξk = k2/2msk

Elementary excitations: 
Bogolubov’s quasiparticles

no BEC, except for free bosons at zero temperature
(for repulsive interaction)

Γk at k ! ms depends strongly on T and k
S. Tan, M.P., and L. Glazman, PRL 105, 090404 (2010)

1D

quasicondensate instead of a condensate,
with a finite spread in a momentum space V. Popov (1972)

exact eigenstates:  Lieb and Liniger (1963)
quasiparticles:  see, e.g., C. Mora and Y. Castin, PRA 67, 053615 (2003)



Energy scales

m (mass)

s (sound velocity)

n (concentration) ωs = ms2/2

T0 = 2n2/m

Ts =
√
ωsT0 = ns

interaction energy 
per particle

quantum degeneracy 
temperature

For a weak repulsive interaction 

ωs ! Ts ! T0

interaction temperature:

at T ! Ts interaction is important

(kB = ! = 1)



Momentum distribution in 1D

T0/T ! 1

δk ∼ mT/n

fk
µ0(T ) = −µ = T 2/T0

fk =
〈
ψ†
kψk

〉
=

1

e(ξk−µ)/T − 1
≈ T

ξk + µ0

Applicable to interacting system as long as
µ0 ! ωs = ms2/2 ⇔ T ! Ts

εk

k

ξk = k2/2m

sk

ms

ωs

At T ! Ts,
the majority of the occupied states have k ! ms

noninteracting bosons, ξk ! T ! T0 = 2n2/m



Momentum distribution in 1D

H =
n

2m

∫
dx

[
κ−2(∂xϕ)

2+ (∂xϑ)
2
]

Tool: hydrodynamic description of long-wavelength excitations

Popov (1972)
Haldane (1981)

interacting bosons, T ! Ts, k ! ms
εk

k

ξk = k2/2m

sk

ms

ωs

density fluctuations are 
suppressed by the interactions

κ =
πT0

2Ts
=

πn

ms
! 1

Effective Hamiltonian

[ϕ(x),ϑ(y)] = i(π/2) sgn(x− y)

ψ(x) ≈
√
n eiϑ(x) , ρ(x) = n+ π−1∂xϕ

quasicodensate



Momentum distribution in 1D

fk =
2T

4ξk + µ0
(T0/T )

−1/2κ,

fk ∼ |ms/k|1−1/2κ,

sk ! min{T,ωs}

T ! sk ! ωs

interacting bosons, T ! Ts, k ! ms
εk

k

ξk = k2/2m

sk

ms

ωs

quasicodensate

ωs ! T ! TS : fk is a Lorentzian, cf. free bosons•
At k ∼ ms and T ∼ Ts we have f ∼ Ts/ωs = 2κ/π

(both for hydrodynamics and free bosons)
•

There is no room for power-low dependence at T ! ωs•



Momentum distribution in 1D

interacting bosons, ξk ! max{ωs, T}
εk

k

ξk = k2/2m

sk

ms

ωs

fk = dE2/dξk ∼ (nc/ξk)
2 ∼ (ωs/ξk)

2 " 1

second-order correction to the ground state energy



Momentum distribution in 1D

fk at T ! ωs

k
√
mT

δk ∼ mT/n

fk

fk ∼ (ωs/ξk)
2 " 1

εk

kms

ωs
treat these as free bosons

use hydrodynamics
(‘bosonization’)



The model

quasicodensate

max{ms,mT/n}

extra particle 

ξq

γ = mc/n ! 1 (weak interaction)

H0 =

∫
dxψ†(x)

(
− 1

2m

d 2

dx2

)
ψ(x) +

c

2

∫
dx :ρ2(x) :

Lieb-Liniger model:

sound velocity: s = (n/m)
√
γ

Integrability-breaking perturbation:

V =
α

m

∫
dx :ρ3(x) : , α ! 1

(the model can be justified microscopically)



ξq

ξq−p

ω = ξq − ξq−p ≈ qp/m

energy transfer:

momentum transfer:

p ≈ mω/q → 0 for q → ∞

w/out interactions:

Γq ∝
α2

mq

∫
dω

∫ 4∏

i=1

dki fk1fk2(fk3+ 1)(fk4+ 1)

× δ(k1 + k2 − k3 − k4) δ(ξk1 + ξk2 − ξk3 − ξk4 + ω)

Relaxation rate



Γq ∝
α2

mq

∫
dω

∫ 4∏

i=1

dki fk1fk2(fk3+ 1)(fk4+ 1)

× δ(k1 + k2 − k3 − k4) δ(ξk1 + ξk2 − ξk3 − ξk4 + ω)

T0/T ! 1

δk ∼ mT/n

fk Main contribution comes from

|ki| ! mT/n

(initial and final states are within the quasicondensate)

∼ α2T0

(
T0

ξq

)1/2 T0

T

diverges at T → 0

Relaxation by small energy transfer

corresponds to a small energy transfer ω ! (δk)2/m ∼ µ0

Γq ∼
α2

mq
(T0/T )

4 (δk)3



Relaxation by small energy transfer

Γq ∼ α2T0

(
T0

ξq

)1/2 T0

T
0T → 0

unphysical order of limits: γ → 0 first, T → 0 after

interacting bosons:

At ωs ! T ! Ts bosonization yields

Γq ∼ α2T0

(
T0

ξq

)1/2 T0

Ts

(
T

Ts

)2

max
{
Γq

}
is reached at T ∼ Ts

Γmax ∼ α2T0

(
T0

ξq

)1/2 T0

Ts

Γq ∝ 1/T is applicable as long as T " Ts



Γq ∝
α2

mq

∫
dω

∫ 4∏

i=1

dki fk1fk2(fk3+ 1)(fk4+ 1)

× δ(k1 + k2 − k3 − k4) δ(ξk1 + ξk2 − ξk3 − ξk4 + ω)

Subleading contribution: final states well outside the quasicondensate

Γ∞ ∼ α2n2

mq

∫
dω

∫
dk3dk4 δ(k3 + k4) δ(ξk3 + ξk4 − ω) ∼ α2T0

I. Mazets, T. Schumm, and J. Schmiedmayer, PRL 100, 210403 (2008)

Relaxation by large energy transfer

• corresponds to a large energy transfer µ0 ! ω ! ξq

• (almost) independent of the interaction strength

• independent of q (hence the notation Γ∞)



Relaxation rate

Γq(T )

Γmax

∼ Ts

Γ∞



Cold atoms in a cylindrical trap

V3D(r) = 4π(a/m)δ(r)Interaction in 3D:

Projection onto the lowest subband 
of transverse quantization yields

γ = 2a/na2r, α = 18 ln(4/3)(a/ar)
2

ar = (mωr)
−1/2 ! a

Main mechanism of losses: 
3-body recombination processes ΓR = βn2/a4r

Γ∞/ΓR = 10.3 a4/(mβ)︸ ︷︷ ︸
=2.1 for 87Rb

≈ 20

For ωr/2π = 15 kHz and n = 7µm−1 we have γ = 0.2, Ts = 120 nK.

With ξq/Ts = ωr/ξq = 2.4, this gives Γmax/ΓR ∼ 100

(these are realistic numbers)



Summary

Γq(T )

Γmax

∼ Ts

Γ∞

Strong nonmonotonic T− dependence
(unlike in 3D), with a max at T ∼ Ts = ns

S. Tan, M.P., and L. Glazman, PRL 105, 090404 (2010) 

Γq ! ΓR ⇒
inelastic collisions due to deviations from the integrability
should be observable in ultracold atomic gases


