Lattice vs Continuum (And 2 vs 3 Species) in the BCS-BEC Crossover

Antonio Privitera SISSA, Trieste (Italy)

In collaboration with:

M. Capone (SISSA), C. Castellani (Roma "Sapienza")

I. Titvinidze, W. Hofstetter (ITP Frankfurt University)

S-Y Chang, A. Daley, S. Diehl, M. Baranov (IQOQI Innsbruck)

21.04.2011 INT Seattle

Layout of the Seminar

Lattice Vs Continuum

- Dilute Gases
- Lattice Systems
- Dilute Limit: MF & DMFT
- Take-Home Message 1

From 2 to 3 species

- SU(3) symmetric case
- Lithium Case
- Take-Home Message 2

Lattice vs Continuum

A. Privitera, M. Capone and C. Castellani, PRB 81, 014523 (2010)

A. Privitera and M. Capone (in preparation)

Crossover in Dilute Gases

Crossover in Dilute Gases

Non perturbative problem

Analytical approaches (not controlled)

Numerical approaches (Finite-Size + Finite-Range/-Density + Sign problem)

Qualitative Level: General Agreement

(crossover, no transition)

Quantitative Level:

Open Problems ?

(e.g. ξ_s, γ , pseudogap for $\eta=0$)

Attractive Hubbard Model

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma=\uparrow,\downarrow} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad (U < 0)$$

Crossover in a (Specific) Lattice Model

Attractive Hubbard Model

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma=\uparrow,\downarrow} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad (U < 0)$$

A. Toschi et al. , PRB (2005)

Attractive Hubbard Model

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma=\uparrow,\downarrow} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad (U < 0)$$

A. Toschi e. al. , PRB 72, 235118 (2005)

Dilute Limit of the Lattice Model

Are these scenarios connected ?

Well Defined Recipe..

 $\lim_{n \to 0} \text{Lattice Model}_{|\eta} = \text{Dilute Fermi Gas}_{|\eta}$

$$(U,n) \to (a_s, k_F)$$
$$a_s^{latt}(U) = \frac{m_e l^3}{4\pi\hbar^2} \frac{1}{U^{-1} - U_c^{latt}}$$
$$U_c^{latt} = \left[-\int_0^{\Lambda} d\epsilon \frac{D_{latt}(\epsilon)}{2\epsilon} \right]^{-1}$$
$$E_F = \frac{\hbar^2 k_F^2}{2m} \quad k_F = \left[3\pi^2 \left(\frac{n}{l^3} \right) \right]^{\frac{1}{3}}$$

Energy

Dilute Limit of the Lattice Model

Are these scenarios connected ?

Well Defined Recipe..

 $\lim_{n \to 0} \text{Lattice Model}_{|\eta} = \text{Dilute Fermi Gas}_{|\eta}$

$$(U,n) \to (a_s, k_F)$$
$$a_s^{latt}(U) = \frac{m_e l^3}{4\pi\hbar^2} \frac{1}{U^{-1} - U_c^{latt}}$$
$$U_c^{latt} = \left[-\int_0^{\Lambda} d\epsilon \frac{D_{latt}(\epsilon)}{2\epsilon} \right]^{-1}$$
$$E_F = \frac{\hbar^2 k_F^2}{2m} \quad k_F = \left[3\pi^2 \left(\frac{n}{l^3} \right) \right]^{\frac{1}{3}}$$

Tells us nothing about the convergence speed...

Every Non-Universal Feature has to disappear...

From Nozieres To Leggett

Static Mean-Field

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- No limitation in density

- Lattice and Continuum
- Easy
- No Fluctuations

From Nozieres To Leggett

Static Mean-Field

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- No limitation in density

- Lattice and Continuum
- Easy
- No Fluctuations

$$n = \frac{1}{N_s} \sum_{\mathbf{k}} \left(1 - \frac{\eta_{\mathbf{k}}}{E_{\mathbf{k}}} \right) \qquad (U, n) \to (a_s, k_F)$$

$$\frac{4}{3} = \int_0^{\Lambda/E_F} dx \ \tilde{D}(x) \left[1 - \frac{(x - \tilde{\mu'})}{\sqrt{(x - \tilde{\mu'})^2 + \tilde{\Delta}^2}} \right]$$

$$\frac{1}{|U|} = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \qquad \forall n \qquad \eta = \frac{1}{\pi} \int_0^{\Lambda/E_F} dx \ \tilde{D}(x) \left[\frac{1}{x} - \frac{1}{\sqrt{(x - \tilde{\mu'})^2 + \tilde{\Delta}^2}} \right]$$

$$\tilde{\mu} = \frac{\mu}{E_F} \ \tilde{\Delta} = \frac{\Delta}{E_F} \quad \tilde{D}(x) = \frac{D_{latt}(E_F x)}{D_{free}(E_F)}$$

$$E_{\mathbf{k}} = \sqrt{\eta_{\mathbf{k}}^2 + \Delta^2}$$

Nozieres & Schmitt-Rink (1985)

From Nozieres To Leggett

Static Mean-Field

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- No limitation in density

- Lattice and Continuum
- Easy
- No Fluctuations

$$n = \frac{1}{N_s} \sum_{\mathbf{k}} \left(1 - \frac{\eta_{\mathbf{k}}}{E_{\mathbf{k}}} \right) \qquad (U, n) \to (a_s, k_F)$$

$$\frac{4}{3} = \int_0^{\Lambda/E_F} \tilde{D}(x) \left[1 - \frac{(x - \tilde{\mu}')}{\sqrt{(x - \tilde{\mu}')^2 + \tilde{\Delta}^2}} \right]$$

$$\frac{1}{|U|} = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \qquad \forall n$$

$$\eta = \frac{1}{\pi} \int_0^{\Lambda/E_F} \tilde{D}(x) \left[\frac{1}{x} - \frac{1}{\sqrt{(x - \tilde{\mu}')^2 + \tilde{\Delta}^2}} \right]$$

$$\tilde{\mu} = \frac{\mu}{E_F} \quad \tilde{\Delta} = \frac{\Delta}{E_F} \quad \tilde{D}(x) = \frac{D_{latt}(E_F x)}{D_{free}(E_F)}$$

$$E_{\mathbf{k}} = \sqrt{\eta_{\mathbf{k}}^2 + \Delta^2}$$
ozieres & Schmitt-Rink (1985)
$$\frac{1}{2} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} = \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} = \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} = \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} = \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{\mathbf{k}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2$$

Mean-Field Results 1

Mean-Field Results 2 (Unitary)

Mean-Field Results 2 (Unitary)

From Static to Dynamical Mean-Field

Dynamical Mean-Field Theory

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- (almost) No limitation in density

- Includes Fluctuations :-)
- Non-Perturbative in U
- Lattice Approach
- Not So Easy

$$\blacksquare$$
 Exact solution in $\,d=\infty$

Kotliar & Vollhardt, PT (2004)

Dynamical Mean-Field Theory

Interacting Lattice Model
Self-consistent local problem

Exact solution in

 $d = \infty$

For systems in 3d

$$\begin{array}{c} \Sigma(\mathbf{k}, i\omega_n) \to \Sigma(i\omega_n) \to \Sigma \\ \\ \text{Exact} \end{array} \begin{array}{c} \text{DMFT} \end{array} \begin{array}{c} \text{Static MF} \end{array} \end{array}$$

(N)
$$G(i\omega_n) = G_{latt}(i\omega_n) \equiv \int_{-\infty}^{\infty} d\epsilon D(\epsilon) \frac{z^* - \epsilon}{|z - \epsilon|^2 + S^2}$$

(A)
$$F(i\omega_n) = F_{latt}(i\omega_n) \equiv \int_{-\infty}^{\infty} d\epsilon D(\epsilon) \ \frac{-S(i\omega_n)}{|z-\epsilon|^2 + S^2}$$

where G, F, Σ, S come from the solution of a self consistent Anderson Impurity Model

$$z = i\omega_n + \mu - \Sigma(i\omega_n)$$

DMFT Results n > 0.1

Fairly Good Agreement

with previous Lattice approaches (QMC and DMFT at the same n)

Not Yet Universal

DMFT Results n > 0.05

 $n_{min}^{QMC} \approx 0.01 - 0.1$ Not Yet Universal

DMFT Results n > 0.01

 $n_{min}^{QMC} \approx 0.01 - 0.1$ Not Yet Universal

 $\forall n > n_{MF}$

NON-UNIVERSAL REGIME

Extrapolation very tricky!
Estimates for the asymptotic slope are needed

Cubic Lattice is the worst choice
 Lattice Gas is better but not that much
 CUT-OFF is intrinsical to a lattice model..

Safe extrapolation of UFG properties requires probably very low densities...

N=2 vs N=3

I. Titvinidze & al., New Journal of Physics 13 035013 (2011)

A. Privitera & al. , Arxiv:1010.0114

3-body losses

3-body losses

Strong losses regime $~\gamma_3/J\gg 1$ In a lattice

- Strong suppression of triple occupancies
 - Effective strong three-body repulsion

 $Vn_1n_2n_3 \qquad V \to \infty$

Kantian et. al. PRL 103, 240401 (2009)

$$\begin{array}{l} \textbf{Model \& Method} \\ \mathcal{H} = -J\sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} \sum_{\sigma \neq \sigma'} \frac{U_{\sigma\sigma'}}{2} \hat{n}_{i\sigma} \hat{n}_{i\sigma'} - \sum_{i} \sum_{\sigma} \mu_{\sigma} \hat{n}_{i\sigma} \\ + V\sum_{i} \hat{n}_{i1} \hat{n}_{i2} \hat{n}_{i3} \end{array} \begin{array}{l} \begin{array}{l} \sigma = 1, 2, 3 \\ U_{\sigma\sigma'} < 0 \\ V = 0, \infty \end{array} \end{array} \begin{array}{l} \textbf{For} \quad U_{\sigma\sigma'} = U, \mu_{\sigma} = \mu \\ \textbf{SU(3) Hubbard Model} \end{array}$$

$$\begin{array}{l} \textbf{Model \& Method} \\ \mathcal{H} = -J\sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} \sum_{\sigma \neq \sigma'} \frac{U_{\sigma\sigma'}}{2} \hat{n}_{i\sigma} \hat{n}_{i\sigma'} - \sum_{i} \sum_{\sigma} \mu_{\sigma} \hat{n}_{i\sigma} \\ + V\sum_{i} \hat{n}_{i1} \hat{n}_{i2} \hat{n}_{i3} \end{array} \begin{array}{l} \begin{array}{l} \sigma = 1, 2, 3 \\ U_{\sigma\sigma'} < 0 \\ V = 0, \infty \end{array} \end{array} \begin{array}{l} \textbf{For} \quad U_{\sigma\sigma'} = U, \mu_{\sigma} = \mu \\ \textbf{SU(3) Hubbard Model} \end{array}$$

$$\begin{aligned} \mathsf{DMFT} \ \mathsf{Self-consistency equations} & \zeta_{\sigma} = i\omega_n + \mu_{\sigma} - \Sigma_{\sigma}(i\omega_n) \\ G_{\sigma}(\tau) &= -\langle T_{\tau}c_{\sigma}(\tau)c_{\sigma}^{\dagger} \rangle & G_{1}(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{\zeta_{2}^{*} - \varepsilon}{(\zeta_{1} - \varepsilon)(\zeta_{2}^{*} - \varepsilon) + \Sigma_{SC}^{2}(i\omega_n)} \\ \mathsf{(n)} & G_{2}(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{\zeta_{1}^{*} - \varepsilon}{(\zeta_{2} - \varepsilon)(\zeta_{1}^{*} - \varepsilon) + \Sigma_{SC}^{*}^{2}(i\omega_n)} \\ \mathsf{(a)} & F(i\omega_n) = -\int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{\Sigma_{SC}(i\omega_n)}{(\zeta_{1} - \varepsilon)(\zeta_{2}^{*} - \varepsilon) + \Sigma_{SC}^{2}(i\omega_n)} \\ F(\tau) &= -\langle T_{\tau}c_{1}(\tau)c_{2} \rangle & G_{3}(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{1}{\zeta_{3} - \varepsilon} \end{aligned}$$

Uncommensurate Density

3d Cubic Lattice

 $m = n_{1,2} - n_3$

c-SF is MAGNETIZED

Non-Monotonic Magnetization

U = -0.312W

 $n_{tot} = 1$

Including 3-Body Constraint

DMFT 3D Cubic lattice $n_{tot} = 0.48, V = 1000J$

No Trionic Phase Always c-SF with finite m

(T=0, W=12J)

Phase Diagram

Phase Diagram

Phase Diagram

Magnetism & Phase SeparationOut of half-filling $m = n_{1,2} - n_3 \neq 0$

Color-Superfluidity always triggers magnetism

Magnetism & Phase SeparationOut of half-filling $m = n_{1,2} - n_3 \neq 0$

Color-Superfluidity always triggers magnetism

For Fixed $N_{\sigma} = N$? Phase Separation

- Strong coupling superfluid $n^{SF}(k_x,k_y) \simeq const$
- Normal component $n^{norm}(k_x,k_y)=0$ for large ${f k}$

Take-Home Message 2

- Without constraint (V = 0):
 Phase Transition c-SF trionic phase
- Effect of three-body losses: No Trionic Phase; Fully Polarized c-SF for large |U|
- C-SF vs Magnetization: Phase Separation

Effective Range

