Lattice vs Continuum (And 2 vs 3 Species) in the BCS-BEC Crossover

Antonio Privitera SISSA, Trieste (Italy)

In collaboration with:

M. Capone (SISSA), C. Castellani (Roma "Sapienza")

I. Titvinidze, W. Hofstetter (ITP Frankfurt University)

S-Y Chang, A. Daley, S. Diehl, M. Baranov (IQOQI Innsbruck)

21.04.2011 INT Seattle

Layout of the Seminar

Lattice Vs Continuum

- Dilute Gases
- Lattice Systems
- Dilute Limit: MF & DMFT
- Take-Home Message 1

From 2 to 3 species

- SU(3) symmetric case
- Lithium Case
- Take-Home Message 2

Lattice vs Continuum

A. Privitera, M. Capone and C. Castellani, PRB 81, 014523 (2010)

A. Privitera and M. Capone (in preparation)

Crossover in Dilute Gases

Crossover in Dilute Gases

Non perturbative problem

Analytical approaches (not controlled)

• Numerical approaches (Finite-Size + Finite-Range/-Density + Sign problem)

Qualitative Level: General Agreement

(crossover, no transition)

a Quantitative Level: **Open Problems** ?

(e.g. ξ_s, γ , pseudogap for $\eta = 0$)

Attractive Hubbard Model

$$
\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma = \uparrow, \downarrow} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad (U < 0)
$$

Attractive Hubbard Model

$$
\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma = \uparrow, \downarrow} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad (U < 0)
$$

A. Toschi et al. , PRB (2005)

Attractive Hubbard Model

$$
\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma = \uparrow, \downarrow} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad (U < 0)
$$

A. Toschi e. al. , PRB 72, 235118 (2005)

Dilute Limit of the Lattice Model

Are these scenarios connected ?

Well Defined Recipe..

 $\lim\limits_{n\rightarrow 0} \mathrm{Lattice}\ \mathrm{Model}_{|\eta}=\mathrm{Dilute}\ \mathrm{Fermi}\ \mathrm{Gas}_{|\eta}$

$$
(U, n) \rightarrow (a_s, k_F)
$$

$$
a_s^{latt}(U) = \frac{m_e l^3}{4\pi\hbar^2} \frac{1}{U^{-1} - U_c^{latt}}
$$

$$
U_c^{latt} = \left[-\int_0^{\Lambda} d\epsilon \frac{D_{latt}(\epsilon)}{2\epsilon} \right]^{-1}
$$

$$
E_F = \frac{\hbar^2 k_F^2}{2m} \quad k_F = \left[3\pi^2 \left(\frac{n}{l^3} \right) \right]^{\frac{1}{3}}
$$

Dilute Limit of the Lattice Model

Are these scenarios connected ?

Well Defined Recipe..

 $\lim\limits_{n\rightarrow 0} \mathrm{Lattice}\ \mathrm{Model}_{|\eta}=\mathrm{Dilute}\ \mathrm{Fermi}\ \mathrm{Gas}_{|\eta}$

$$
(U, n) \rightarrow (a_s, k_F)
$$

$$
a_s^{latt}(U) = \frac{m_e l^3}{4\pi\hbar^2} \frac{1}{U^{-1} - U_c^{latt}}
$$

$$
U_c^{latt} = \left[-\int_0^\Lambda d\epsilon \frac{D_{latt}(\epsilon)}{2\epsilon} \right]^{-1}
$$

$$
E_F = \frac{\hbar^2 k_F^2}{2m} \quad k_F = \left[3\pi^2 \left(\frac{n}{l^3} \right) \right]^{\frac{1}{3}}
$$

 Tells us nothing about the convergence speed...

Every Non-Universal Feature has to disappear...

From Nozieres To Leggett

Static Mean-Field

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- No limitation in density
- Lattice and Continuum
- Easy
- **No Fluctuations**

From Nozieres To Leggett

Static Mean-Field

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- No limitation in density
- Lattice and Continuum
- Easy
- **No Fluctuations**

$$
n = \frac{1}{N_s} \sum_{\mathbf{k}} \left(1 - \frac{\eta_{\mathbf{k}}}{E_{\mathbf{k}}} \right)
$$

$$
\frac{1}{|U|} = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$

$$
\frac{1}{|V|} = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$

$$
\frac{1}{\eta_{\mathbf{k}}} = \frac{1}{E_F} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$

$$
\frac{1}{\eta_{\mathbf{k}}} = \frac{1}{E_F} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$

$$
\frac{1}{\eta_{\mathbf{k}}} = \frac{\mu}{E_F} \tilde{\Delta} = \frac{\Delta}{E_F} \tilde{D}(x) = \frac{D_{latt}(E_{FX})}{D_{free}(E_F)}
$$

$$
E_{\bf k}=\sqrt{\eta_{\bf k}^2+\Delta^2}
$$

Nozieres & Schmitt-Rink (1985)

From Nozieres To Leggett

Static Mean-Field

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- No limitation in density
- Lattice and Continuum
- Easy
- **No Fluctuations**

$$
n = \frac{1}{N_s} \sum_{\mathbf{k}} \left(1 - \frac{\eta_{\mathbf{k}}}{E_{\mathbf{k}}} \right)
$$
\n
$$
\frac{1}{|U|} = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$
\n
$$
\frac{1}{|V|} = \frac{1}{N_s} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$
\n
$$
\frac{1}{\eta_{\mathbf{k}}} = \frac{1}{\eta_{\mathbf{k}}} \sum_{\mathbf{k}} \frac{1}{2E_{\mathbf{k}}}
$$
\n
$$
\eta_{\mathbf{k}} = \frac{\mu}{E_{\mathbf{F}}} \hat{\Delta} = \frac{\Delta}{E_{\mathbf{F}}} \hat{D}(x) \left[\frac{1}{x} - \frac{1}{\sqrt{(x - \tilde{\mu}')^2 + \tilde{\Delta}^2}} \right]
$$
\n
$$
E_{\mathbf{k}} = \sqrt{\eta_{\mathbf{k}}^2 + \Delta^2}
$$
\n<math display="block</math>

Mean-Field Results 1

Mean-Field Results 2 (Unitary)

Mean-Field Results 2 (Unitary)

From Static to Dynamical Mean-Field

Dynamical Mean-Field Theory

- Exact in Both Limits at T=0
- Thermodynamic (no Finite Size)
- (almost) No limitation in density
- Includes Fluctuations :-)
- Non-Perturbative in U
- Lattice Approach
- Not So Easy

$$
\blacksquare\ \mathsf{Exact}\ \mathsf{solution}\ \mathsf{in}\ \ d = \infty
$$

Kotliar & Vollhardt, PT (2004)

Dynamical Mean-Field Theory

Interacting Lattice Model **Interacting Lattice Model** Providence Research Research and Research and Research and Self-consistent local problem

 $d=\infty$

Exact solution in

$$
\Sigma(\mathbf{k},i\omega_n)\rightarrow\Sigma(i\omega_n)\rightarrow\Sigma_{\text{EMFT}}\over \text{DMFT}
$$

(N)
$$
G(i\omega_n) = G_{latt}(i\omega_n) \equiv \int_{-\infty}^{\infty} d\epsilon \ D(\epsilon) \ \frac{z^* - \epsilon}{|z - \epsilon|^2 + S^2}
$$

(A)
$$
F(i\omega_n) = F_{latt}(i\omega_n) \equiv \int_{-\infty}^{\infty} d\epsilon \ D(\epsilon) \ \frac{-S(i\omega_n)}{|z - \epsilon|^2 + S^2}
$$

 \blacksquare where $\,G, F, \Sigma, S$ come from the solution of a self consistent Anderson Impurity Model

$$
z = i\omega_n + \mu - \Sigma(i\omega_n)
$$

DMFT Results n > 0.1

Fairly Good Agreement

with previous Lattice approaches with previous Lattice approaches **Not Yet Universal** (QMC and DMFT at the same n)

DMFT Results n > 0.05 DMFT Results

 $n_{min}^{QMC} \approx 0.01 - 0.1$ **Not Yet Universal**

DMFT Results n > 0.01

 $n_{min}^{QMC} \approx 0.01 - 0.1$ **Not Yet Universal**

 $\forall n > n_{MF}$

NON-UNIVERSAL REGIME $\overline{\mathbf{z}}$

Extrapolation very tricky! Estimates for the asymptotic slope are needed

Cubic Lattice is the worst choice Lattice Gas is better but not that much CUT-OFF is intrinsical to a lattice model..

Safe extrapolation of UFG properties requires probably very low densities...

N=2 vs N=3

I. Titvinidze & al. , New Journal of Physics 13 035013 (2011)

A. Privitera & al. , Arxiv:1010.0114

3-body losses

3-body losses

Strong losses regime $\gamma_3/J \gg 1$ In a lattice

- Strong suppression of triple occupancies
- Effective strong three-body repulsion

 $V n_1 n_2 n_3$ $V\rightarrow\infty$

Kantian et. al. PRL 103, 240401 (2009)

Model & Method\n
$$
\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} \sum_{\sigma \neq \sigma'} \frac{U_{\sigma \sigma'}}{2} \hat{n}_{i\sigma} \hat{n}_{i\sigma'} - \sum_{i} \sum_{\sigma} \mu_{\sigma} \hat{n}_{i\sigma}
$$
\n
$$
+ V \sum_{i} \hat{n}_{i1} \hat{n}_{i2} \hat{n}_{i3} \begin{bmatrix} \sigma = 1, 2, 3 \\ U_{\sigma \sigma'} < 0 \\ V = 0, \infty \end{bmatrix}
$$
\n**For** $U_{\sigma \sigma'} = U, \mu_{\sigma} = \mu$ \n**SU(3) Hubbard Model**

Model & Method\n
$$
\mathcal{H} = -J \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} \sum_{\sigma \neq \sigma'} \frac{U_{\sigma \sigma'}}{2} \hat{n}_{i\sigma} \hat{n}_{i\sigma'} - \sum_{i} \sum_{\sigma} \mu_{\sigma} \hat{n}_{i\sigma}
$$
\n
$$
+ V \sum_{i} \hat{n}_{i1} \hat{n}_{i2} \hat{n}_{i3} \begin{bmatrix} \sigma = 1, 2, 3 \\ U_{\sigma \sigma'} < 0 \\ V = 0, \infty \end{bmatrix}
$$
\n**For** $U_{\sigma \sigma'} = U, \mu_{\sigma} = \mu$ \n**SU(3) Hubbard Model**

DMFT Self-consistency equations $\zeta_{\sigma} = i\omega_n + \mu_{\sigma} - \Sigma_{\sigma}(i\omega_n)$ $G_1(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{\zeta_2^* - \varepsilon}{(\zeta_1 - \varepsilon)(\zeta_2^* - \varepsilon) + \Sigma_{SC}^2(i\omega_n)}$ $G_{\sigma}(\tau) = -\langle T_{\tau} c_{\sigma}(\tau) c_{\sigma}^{\dagger} \rangle$ (n) $G_2(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{\zeta_1^* - \varepsilon}{(\zeta_2 - \varepsilon)(\zeta_1^* - \varepsilon) + \sum_{\alpha=0}^{\infty} i(\omega_n)}$ $F(i\omega_n) = -\int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{\Sigma_{SC}(i\omega_n)}{(\zeta_1 - \varepsilon)(\zeta_2^* - \varepsilon) + \Sigma_{SC}^2(i\omega_n)}$ (a) $F(\tau) = -\langle T_{\tau} c_1(\tau) c_2 \rangle$ $G_3(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon D(\varepsilon) \frac{1}{\zeta_3 - \varepsilon}$

Uncommensurate Density 3d Cubic Lattice $m = n_{1,2} - n_3$

C-SF is MAGNETIZED

• Non-Monotonic Magnetization

 $U = -0.312W$

 $n_{tot}=1$

Including 3-Body Constraint

DMFT 3D Cubic lattice $n_{tot} = 0.48, V = 1000J$

Always c-SF with finite m No Trionic Phase

 $(T = 0, W = 12J)$

Phase Diagram

Phase Diagram

Phase Diagram

Magnetism & Phase Separation $m = n_{1,2} - n_3 \neq 0$ Out of half-filling

Color-Superfluidity always triggers magnetism

Magnetism & Phase Separation Out of half-filling $m = n_{1,2} - n_3 \neq 0$

 Color-Superfluidity always triggers magnetism

For Fixed $N_{\sigma} = N$? **Phase Separation**

- $n^{SF}(k_x, k_y) \simeq const$ Strong coupling superfluid
- Normal component $n^{norm}(k_x, k_y) = 0$ for large **k**

Take-Home Message 2

- Without constraint $(V = 0)$: Phase Transition c -SF \longrightarrow trionic phase
- **Effect of three-body losses:** No Trionic Phase; Fully Polarized c-SF for large $|U|$
- **C-SF vs Magnetization: Phase Separation**

Effective Range

