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Lattice Effective Field Theory 
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From effective field theory to first principles calculations 



N = 8, 12, 16 neutrons at L3 = 43, 53, 63, 73 

Epelbaum, Krebs, D.L, Meißner, EPJA 40 (2009) 199 
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S-wave scattering amplitude: 

Unitarity limit: 

ξ  is a dimensionless number 

(Bertsch parameter) 

Neutron matter close to unitarity limit for  
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Free Fermi gas ground state Unitarity limit ground state 

Unitarity limit 



Experiments done with cold 6Li and 40K atoms.  Different hyperfine states.  

Open two-atom channel and closed diatomic molecule channel.  

Zeeman tune energy of the diatomic molecule with external magnetic field to 

produce Feshbach resonance near threshold. [O’Hara et. al., Science 298 

(2002) 2179; Regal, Jin, PRL (2003) 230404; etc.] 

Cold atomic Fermi gases  
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Cold atom experimental values for x   

0.32(+13)(−10) [9] 

0.36(15) [10] 

0.51(4) [11] 

0.46(5) [12] 

0.46(+05)(−12) [13] 

0.435(15) [14] 

0.41(15) [15] 

0.41(2) [16] 

0.39(2) [16] 

0.36(1) [17] 
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references in arXiv: 1104.2102 [cond-mat-quant-gas] 



Saddle point and variational approximations [18, 19] 

Pade approximations and truncated series methods [20–22] 

Mean field theory with pairing [23, 24] 

Density functional theory extrapolated from small systems [25] 

Renormalization group flow [26] 

Dimensional expansions [27–33] 

Large-N expansions [34] 

Other methods [35] 

 

The values for ξ range from 0.2 to 0.6, with most predictions in 

the range from 0.3 to 0.4. 

Analytical values for x   

references in arXiv: 1104.2102 [cond-mat-quant-gas] 
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[Carlson, Chang, Pandharipande, Schmidt, PRL 91 (2003) 50401 

Astrakharchik, Boronat, Casulleras, Giorgini, PRL 93 (2004) 200404 

Forbes, Gandolfi, Gezerlis, arXiv:1011.2197] 

Fixed-node diffusion Monte Carlo values for x   

Other diffusion Monte Carlo calculations referenced in  

arXiv: 1104.2102 [cond-mat-quant-gas] 
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Monte Carlo lattice calculations 

D.L., PRC 78 (2008) 024001 
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Other lattice calculations referenced in  

arXiv: 1104.2102 [cond-mat-quant-gas] 



Ground state energy ratio 

There are at least two different definitions for the ground state energy ratio.  

We use a “few-body” definition, which is an energy ratio for the interacting 

and non-interacting systems with the same numbers of particles and volume, 

Others prefer a “thermodynamical” definition where the non-interacting 

energy is replaced by a thermodynamic limit value based on particle density 
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Table of conversion factors between the two energy ratio definitions 
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Two-particle energy levels near threshold  

in a periodic cube related to phase shifts 

Lüscher’s finite-volume formula 

L 

L 
L 

Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531  

Unknown operator 

coefficients 

Physical  

scattering data 
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Hamiltonian lattice calculation of x2,2 

Start with a lattice Hamiltonian for the non-interacting system  

We consider two different lattice Hamiltonians, both of which give the 

unitarity limit in the limit of large lattice volume in lattice units.  H1 has 

infinite scattering length. H2 has infinite scattering length and zero effective 

range. 
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From Lüscher’s formula  
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Results using Lanczos eigenvector iteration 
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Euclidean lattice calculation of x2,2 

We use a normal-ordered Euclidean lattice transfer matrix formalism 

The coefficient C is tuned using Lüscher’s formula 
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From Lüscher’s formula  

19 



D.L., PRC 78 (2008) 024001 

For the Monte Carlo simulation we use a bounded continuous auxiliary field 

formalism.  
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We use the following initial state: 
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We calculate using the following lattice volumes: 

24 



Results using Euclidean lattice Monte Carlo 
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Results using Euclidean lattice Monte Carlo 
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We work with continuous variables.  The interaction will be written as a 

Pöschl-Teller potential tuned to infinite S-wave scattering length, 

We take the zero-range limit, 

The four-particle wavefunction will be written as 

The effective range parameter is given by the relation 

Diffusion Monte Carlo calculation of x2,2 
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#

Diffusion Monte Carlo (no importance sampling) 
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For simple bosonic diffusion Monte Carlo without importance sampling the 

density of walkers is given by the wavefunction 

For fixed-node diffusion Monte Carlo, we importance sample using a trial 

wavefunction  

Walkers are not able to cross the nodal surfaces of the trial wavefunction.  

Hence there are positive-side walkers and negative-side walkers. 

Fixed-node diffusion Monte Carlo 
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#

Fixed-node diffusion Monte Carlo 
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Orbitals are Gaussians with nearest periodic copies 

We use a trial wavefunction of the form 

Jastrow factors are also Gaussians with nearest periodic copies.   All 

parameters are optimized using variational Monte Carlo. 
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Released-node diffusion Monte Carlo 

For the released-node diffusion Monte Carlo, we importance sample using a 

positive-definite guiding function  

We vary the control parameter a.  The average squared trial wavefunction is 

evaluated at the beginning of the released-node propagation time.  

During the released-node propagation, we assign weight factors to the 

individual walkers rather than using birth-death branching processes. 
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#

Released-node diffusion Monte Carlo 
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34 

Nodal crossing diffusion time 
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Summary of benchmark results 

Hamiltonian lattice using Lanczos iteration 

Euclidean lattice Monte Carlo 

Fixed-node diffusion Monte Carlo 

Released-node diffusion Monte Carlo 
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