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Consider the unitary fermi gas: 
*infinite scattering length 
*zero range 

If you put in a harmonic trap, then 
the only intrinsic scales (energy, 
length) are those of the trap! 



We’ll use configuration interaction,  
or diagonalization in a shell-model basis. 

The unitary fermi gas approximates the 
nuclear case (long scattering length, short 
range) but turns out to be even more 
challenging. 
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Prelude:  
what goes into a shell-model calculation 
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Prelude: what goes into a shell-model calculation 

Configuration-interaction (CI) calculations in a shell-model basis: 

Solve                                

where one expands in a Slater determinant basis: 

where each Slater determinant is built from single-particle  
states with good angular momentum j,m (but arbitrary, and sometimes  
unspecified, radial wavefunction). 

€ 

ˆ H Ψ = E Ψ

€ 

Ψ = cα
α

∑ α
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Prelude: what goes into a shell-model calculation 

The Hamiltonian is input in second quantization: 

€ 

ˆ H = εa ˆ n a + 1
4 Vabcd ˆ a a

+ ˆ a b
+ ˆ a d ˆ a c∑∑

single-particle energies two-body matrix elements 
The single-particle energies and two-body matrix elements are  
integrals that implicitly depend upon the choice of single-particle  
wavefunctions.... but are computed externally to the CI code and  
are read in as a file of numbers.  No restriction on form; can be non-local. 

                   The BIG QUESTION: 
What are these numbers? How do we get them? 
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Computing the Interaction 
The two-body matrix element… 

…is a six-dimensional integral. 

However, for harmonic oscillator single-particle states, there is an exact  
and finite transformation between the lab frame and the intrinsic frame 

Talmi-Moshinksy transformation bracket 
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Computing the Interaction 
If the interaction V  = V(r), then one only needs to do a  
(finite set of) one-dimensional integrals in the relative frame: 

Vijkl = (finite sum over Talmi-Moshinsky brackets) × Vn’n 
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€ 

ˆ H = −


2

2m
∇ i

2 + 1
2 mΩ2ri

2

i
∑ −V0 δ( r i −

i< j
∑  r i)

V0 tuned for infinite scattering length 
(cutoff-dependent) 

(For example, you can find analytically 
for a square well the scattering length  
as a function of V0 and well radius.) 

The trapped, two-component 
fermi gas at unitarity 

3ħΩ   pf 

2ħΩ  sd 

1ħΩ  p 

0ħΩ  s 

lab frame: 
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Computing the Interaction 
For a δ-interaction, this becomes (at first) even easier: 
only s-waves are nontrivial and the integral becomes  
trivial: 

All we have to do now is to choose V0 
to get an infinite scattering length….  

V(r) = V0 δ(r) 
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Regularizing the δ-potential 

In our case the cut-off is not in coordinate or momentum, 
but in the harmonic oscillator quanta.  

That is, in the relative frame, we have the matrix  
elements Vn’n =                          with V0 depending on 
the max value of n = Nmax 

But how do we determine V0 to get a 
scattering length if we are now in a 
basis of harmonic oscillator states (all 
of which are bound)? 
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Regularizing the δ-potential 

Consider the l = 0 states for a 3D harmonic oscillator  
in the relative frame. The eigen-energies are  
3/2ω, 7/2 ω, 11/2 ω, 15/2 ω …. 

If you have a δ-potential with an infinite  
scattering length + a  harmonic oscillator, 
the eigen energies are 1/2ω, 5/2 ω, 9/2 ω…. 

You can do this numerically by taking 
a finite square well with infinite 
scattering length and adding to it a 
harmonic oscillator 
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Regularizing the δ-potential 
In the harmonic oscillator basis,  

One can find an analytic expression for V0 so that the  
ground state has energy 1/2ω  for any Nmax (Y. Alhassid) 

The rest of the spectrum, however, will be approximate 
due to the cut-off 
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The many-body calculation 

Okay! Now we’re ready to 
calculate for the many-

body system! 

Step 1: Choose a cut-off Nmax and generate  
the interaction in the relative frame.  

Step 2: Need to choose a many-body space – for us  
this is the maximal # of orbits in the lab frame, Norbit 

Step 3: Generate the two-body matrix elements going from the relative 
frame to the lab frame via Talmi-Moshinsky transformation…  
                    ….and run through a CI-shell model code!  
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           Introduction to Effective Interactions 

For nuclear physics, “hard core”  
makes calculations troublesome. 

Strong, short-range part of interaction means one has  
strong coupling to high-momentum/high energy orbits. 
Bare interaction requires many orbitals to converge. 

Thus, many orbits are required...too many 
for most CI calculations (possible for coupled cluster) 
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Alternately, one creates a renormalized effective interaction  
that implicitly accounts for the sums to high-momentum states, 

e.g., Brueckner G-matrices. 

In more modern approaches we generally use  
a unitary transformation in the relative frame: 

€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U 
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Some common unitary transformations are  
Okubo-Lee-Suzuki, Vlow-k, and the similarity 
renormalization group (SRG). 

They all have the same goal: soften the short-range/high-p  
behavior while preserving two-body (on-shell) data. In other 
words, they modify the off-shell behavior, which can only 
be seen in many-body (A = 3 and higher) systems. 
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Effective interactions 
Example: Okubo-Lee-Suzuki-Okamoto (+…) 
methodology:  

Ncutoff 

Relative frame: 

Hrel 

Start with some large cutoff  
so that the low-lying spectrum 
is correct (Ncutoff ~ 250 – 1000 ) Nmax 

We want to truncate to some 
smaller Nmax ~ 2 – 10… 
but want the correct spectrum  
in this smaller space 

This relative space is too large to  
handle in a many-body calculation 
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Effective interactions 
We follow the Okubo-Lee-Suzuki-Okamoto (+…) 
methodology:  

Ncutoff 

Relative frame: 

Hrel 

Nmax 

We introduce a unitary trans-
formation in the relative space 
which decouples the smaller  
model space (dim Nmax)  
from the larger cutoff space 

Hrel H’rel = U+HrelU 

After this we transform to  
the lab frame. 

(NB: in the lab frame, the unitary transformation  
induces three-body, four-body, etc. forces) 
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Effective interactions 
An alternative one for the unitary fermi gas is the Alhassid-Bertsch-Fang, 
which yields (in h.o. space) a separable interaction.  

Relative frame: 

Hrel 

Nmax 

Here the unitary transformation 
is only implied, not explicit. 
The result depends only  
on Nmax , not Ncutoff. 

€ 

Veff =U +(H0 +V )U −H0



Alhassid et al PRL 100 230401 (2008) 

q+1 = dimension in relative space (max relative excitement 
is 2q hw) = cutoff in relative harmonic oscillator 
= “V-low-Nmax” 



After extrapolating to large Norbit for fixed q (cut-off), must 
extrapolate to large q. 



Using Okubo-Lee-Suzuki; requires large initial cutoff 







The same “energy” or Nhw truncation as used in the  
“no-core shell model” in nuclear physics  



The same “energy” or Nhw truncation as used in the  
“no-core shell model” in nuclear physics – slow convergence 
(see also Stetcu et al, PRA 76 063613 (2007)) 



What’s behind the slow convergence? 

The culprit seems to be the zero range. 

We can test this by using a finite square well but with  
infinite scattering length. 
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Making effective interactions more effective 

“Hard core” or short range makes calculations troublesome. 
Hence, one creates a renormalized effective interaction  
that implicitly accounts for the sums to high-momentum states, 
today via unitary transformations  

A renormalized effective interaction is numerically 
more tractable, but still doesn’t give the right spectrum. 

This is often traced back to the need for 3-body forces. 
Effective interactions also induce 3- (and A-) body forces. 
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Therefore one often tweaks a renormalized realistic interaction 
in order to make it agree better with data. 

cf Brussaard and Glaudemans, Ch.7 
more recent: Brown and Richter, PRC 74 034315 (2006)  (“USDA”, “USDB”) 
and others... 

Making effective interactions more effective 
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Therefore one often tweaks a renormalized realistic interaction 
in order to make it agree better with data. 

Given a Hamiltonian H, compute some set of  
levels (over many nuclei)          with energies Eα ; 
let Eα0 be the experimental (target) energies. 

Want to minimize 

€ 

α{ }

€ 

χ 2 = Eα
0 − Eα( )

2

α

∑

€ 

ˆ H → ˆ H + δci
ˆ H i

i
∑Let 

and  

€ 

Eα → Eα + δci
∂Eα

∂cii
∑

€ 

∂Eα

∂ci

= α ˆ H i α

Hellmann-Feynman theorem: 

Here we’re working in the lab frame and adjusting the 
two-body matrix elements Vijkl 
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€ 

ˆ H → ˆ H + δci
ˆ H i

i
∑

Want to minimize 

€ 

χ 2 = Eα
0 − Eα( )

2

α

∑

Let 

and  

€ 

Eα → Eα + δci
∂Eα

∂cii
∑

€ 

≅ Eα
0 − Eα − ∂Eα ∂ci

i
∑ ⋅δci

 

 
 

 

 
 

2

α

∑
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Want to minimize 

€ 

χ 2 = Eα
0 − Eα( )

2

α

∑

€ 

≅ Eα
0 − Eα − ∂Eα ∂ci

i
∑ ⋅δci

 

 
 

 

 
 

2

α

∑

€ 

∂χ 2

∂δci
= 0

€ 

∂Eα

∂ciα

∑ ∂Eα

∂c j

 

 
  

 

 
  

j
∑ δc j =

∂Eα

∂ci
Eα
0 − Eα( )

α

∑

This has the form   

€ 

BTB c = BTδ
 
E 
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€ 

Bαi =
∂Eα

∂ci

Formally the solution to    

€ 

BTB c = BTδ
 
E 

  

€ 

 c = BTB( )
−1
BTδ
 
E is but 

may be singular or nearly so 

Thus one does a singular value decomposition— 
find the eigenvalues of BTB and truncate. 
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SVD eigenvalues 
for USDB in sd-shell 
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What about “realistic” effective nuclear interactions? 

Q:  What does it mean to be “realistic”? 

A:  Match experimental data! 
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Life cycle of a realistic interaction: 

Choose a form (local, 
contact + gradients,  
meson‐exchange, etc.) 

Fit relative V to 2‐body data:  
phase shifts + deuteron 

Transform from relative 
frame  to lab frame via 
Moshinsky  brackets 

Output two‐body  
matrix  elements 
 V(ab,cd) 

Put into  
many‐body  
calculation 
(CI, CC, etc) 

Good  
agreement? 

YES 

NO 

Publish 

Publish  ? 
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Life cycle of a realistic interaction: 

Fit relative V to 2‐body data:  
phase shifts + deuteron 

Transform from relative 
frame  to lab frame via 
Moshinsky  brackets 

? 
Here is where one needs to 
“renormalize” the short‐range/
high momentum part of the 
interaction 

Today this renormalization is  
accomplished via unitary 
transformations that 
preserve two‐body data  
(phase shifts, bound states) 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Some common unitary transformations are  
Okubo-Lee-Suzuki, Vlow-k, and the similarity 
renormalization group (SRG). 

They all have the same goal: soften the short-range/high-p  
behavior while preserving two-body (on-shell) data. In other 
words, they modify the off-shell behavior, which can only 
be seen in many-body (A = 3 and higher) systems. 

There have been some other attempts to choose  
different off-shell behavior, e.g., the INOY  
and JISP16 interactions.  
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They all have the same goal: soften the short-range/high-p  
behavior while preserving two-body (on-shell) data. In other 
words, they modify the off-shell behavior, which can only 
be seen in many-body (A = 3 and higher) systems. 

€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

Can we choose the best 
generator A of the unitary 

transformation... 
the same way we fitted semi-

empirical interactions? 
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Never waste a crisis, or,  
Cracking the off-shell degrees of freedom 

in in “realistic” interactions 



Making Effective Interactions More Effective 
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A Modest Proposal: 

€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

We can expand the antisymmetric operator A 
in a series of “base” operators:  

Then we can find perturbations of the unitary  
transformation                    

€ 

ˆ A = ci
ˆ A i

i
∑

€ 

ˆ H eff ≈ ˆ H + ci[ ˆ H , ˆ A i]
i
∑

Then we compute 

and do SVD as before... 

€ 

Bαi =
∂Eα

∂ci

= α ˆ H , ˆ A i[ ]α

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 



Making Effective Interactions More Effective 
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€ 

ˆ H eff = ˆ U −1 ˆ H ˆ U = e− ˆ A ˆ H e ˆ A 

This is just like the SVD fits to semi-empirical 
interactions such as USDB, GXPF1, etc, except   

USDB etc: work in lab frame, perturb Hamiltonian 

New:  we perturb the generators of the unitary 
transformation in the relative frame  

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

€ 

Bαi =
∂Eα

∂ci

= α ˆ H , ˆ A i[ ]α



Making Effective Interactions More Effective 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

  

€ 

ˆ H = −


2

2m
∇ i

2 + 1
2 mΩ2ri

2

i
∑ −V0 δ( r i −

i< j
∑  r i)

V0 tuned for infinite scattering length 
(cutoff-dependent) 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

  

€ 

ˆ H = −


2

2m
∇ i

2 + 1
2 mΩ2ri

2

i
∑ −V0 δ( r i −

i< j
∑  r i)Only s-wave channel  

in relative  coordinates 

Slow convergence  
in CI calculations. 

Use ABF regularization 
Alhassid, Bertsch, Fang, PRL100,  

230401(2008)   
with cutoff  of 10ħΩ  
(in relative s-channel) 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 



Making Effective Interactions More Effective 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Use ABF regularization  
with cutoff  of 10ħΩ  
(in relative s-channel). 

In lab frame, cutoff of 3ħΩ 

For preliminary study: 

Fit to A =3, 1-, 0+ 

          A = 4, 0+,1+, 2+ 

or to A = 3-10 g.s. 

3ħΩ   pf 

2ħΩ  sd 

1ħΩ  p 

0ħΩ  s 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

star6ng Hrel  ini6al rms  fit rms  rms of 
predic6on 

bare  0.62  0.10  0.32 

ABF  1.06  0.06  0.37 

Fit to 5 states in A = 3,4;  
“prediction” is comparison against g.s. of all A = 3-10 
(all energies in units of trap hw) 

star6ng Hrel  ini6al rms  fit rms 

bare  1.16  0.28 

ABF  2.32  0.25 

Fit to g.s. energies of A = 3-10  
(all energies in units of trap hw) 



Making Effective Interactions More Effective 
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Sample application: cold atomic gases at unitarity in a harmonic trap 

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions 

Using only 1 generator (d/dr) 



Making Effective Interactions More Effective 
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I have discussed two powerful tool for analyzing and “improving” 
effective interactions: 

-- Singular value decomposition, to find most important degrees  
of freedom when fitting to data 
   -- similar behavior both with empirical and random interactions 

-- Unitary transformations, to adjust off-shell matrix elements 

Conclusions and summary 



Making Effective Interactions More Effective 
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I have developed a general formalism using unitary transformations  
that (a) preserve desired properties (on-shell matrix elements,  
eigenvalues) and (b) can be fitted to data. 

Preliminary application to a cold atomic gas at unitarity is promising. 

Conclusions and summary 

Next step: apply to nuclear systems  
(more complicated, multi-channel; 
not only binding energies, but also spin-orbit 
splitting usually attributed to 3-body forces) 


