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/Consider' the unitary fermi gas: \
*infinite scattering length
*zero range

If you put in a harmonic trap, then
the only intrinsic scales (energy,

length) are those of the trap! /




/\Ne’ll use configuration interaction, \
or diagonalization in a shell-model basis.

The unitary fermi gas approximates the
nuclear case (long scattering length, short
range) but turns out to be even more

&hallenging.




Prelude:
what goes into a shell-model calculation
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Prelude: what goes into a shell-model calculation

Configuration-interaction (CI) calculations in a shell-model basis:

Solve ﬁ‘qj> — E‘lp>

where one expands in a Slater determinant basis:

W)=Y cda)

(04

where each Slater determinant is built from single-particle
states with good angular momentum j,m (but arbitrary, and sometimes
unspecified, radial wavefunction).



Prelude: what goes into a shell-model calculation

The Hamiltonian is input in second quantization:

H = Egana * EVabcdaaabadac

/ \

single-particle energies two-body matrix elements

The single-particle energies and two-body matrix elements are

integrals that implicitly depend upon the choice of single-particle
wavefunctions.... but are computed externally to the CI code and
are read in as a file of numbers. No restriction on form; can be non-local.

The BIG QUESTION:
What are these numbers? How do we get them?



Computing the Interaction

The two-body matrix element...

V= [dr [dF'-¢; (F)g; )W (F =7, (F)g, ()

...Is a six-dimensional integral.

However, for harmonic oscillator single-particle states, there is an exact
and finite transformation between the lab frame and the intrinsic frame

b, G, ) = 3 el [l N L)

Talmi-Moshinksy transformation bracket
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Computing the Interaction

If the interaction V = V(r), then one only needs to do a
(finite set of) one-dimensional integrals in the relative frame:

Vijkl =fd’7 : ' ’)¢k (’7)¢z ’7’)

Vi = [0, (W (), ()

V'jkl = (finite sum over Talmi-Moshinsky brackets) x V.

I n'n
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The trapped, two-component
fermi gas at unitarity

ﬁ=2-%v + - sz ? VE(S(}’ —7’)

i i< j
lab frame:
3hQ pf
/ 2hQ sd  V tuned for infinite scattering length
-9 606 / 1hQ 5 (cutoff-dependent)

i < 0hQ's  (For example, you can find analytically
\_/ for a square well the scattering length

as a function of V;, and well radius.)



Computing the Interaction

For a d-interaction, this becomes (at first) even easier:
only s-waves are nontrivial and the integral becomes

/
vV, = f u (FW(Fu, (r)ydr = Vg, (0)p,(0)

All we have to do now is to choose V,,

‘W/ to get an infinite scattering length....

>

3 4 ’

\C&/' -

V(r) =V, o(r)
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Regularizing the d-potential

In our case the cut-off is not in coordinate or momentum,
but in the harmonic oscillator quanta.

That is, in the relative frame, we have the matrix

elements V., &/ @ . (O)an (O)with V, depending on

the max value of n = N_,

But how do we determine V, to get a
‘[‘/I// sca’Ftering Iength_ if we are now in a
3 7R basis of harmonic oscillator states (all
’\C,\j_ of which are bound)? )




Regularizing the d-potential

ﬁz 5 Consider the / = 0 states for a 3D harmonic oscillator
—+ %ma) r in the relative frame. The eigen-energies are
2m 3/2hw, 712 ho, 11/2 hw, 15/2 ho ...
n D If you have a d-potential with an infinite
Pt V.6 (3) (,7’) scattering length + a harmonic oscillator,
2m 2 the eigen energies are 1/2hw, 5/2 hw, 9/2 fiw....
You can do this numerically by taking
[VV/ a finite square well with infinite

72N scattering length and adding to it a

3 . .
'\C&/ harmonic oscillator )
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Regularizing the d-potential

. . . A p A .
In the harmonic oscillator basis, H, =<+ %ma)zrz _ V06(3)(r)
2m
/
(n

One can find an analytic expression for V,, so that the
ground state has energy 1/2hw for any N, (Y. Alhassid)

N

H

n>l=0 =5, 2n+hw -V, (0)¥ (0)

rel

The rest of the spectrum, however, will be approximate
due to the cut-off
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The many-body calculation

[\/V < Okay! Now we’re ready to
v calculate for the many-
"'\c,&j' body system!

Step 1: Choose a cut-off N, and generate
the interaction in the relative frame.

Step 2: Need to choose a many-body space — for us
this is the maximal # of orbits in the lab frame, N_;

Step 3: Generate the two-body matrix elements going from the relative
frame to the lab frame via Talmi-Moshinsky transformation...
....and run through a Cl-shell model code!
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Introduction to Effective Interactions

For nuclear physics, “hard core”
makes calculations troublesome.

Strong, short-range part of interaction means one has
strong coupling to high-momentum/high energy orbits.
Bare interaction requires many orbitals to converge.

Thus, many orbits are required...too many
for most CI calculations (possible for coupled cluster)



Alternately, one creates a renormalized effective interaction
that implicitly accounts for the sums to high-momentum states,

e.g., Brueckner G-matrices.

In more modern approaches we generally use
a unitary transformation in the relative frame:

" aa
H, =U'HU



Some common unitary transformations are
Okubo-Lee-Suzuki, V. ,, and the similarity
renormalization group (SRG).

They all have the same goal: soften the short-range/high-p
behavior while preserving two-body (on-shell) data. In other
words, they modify the off-shell behavior, which can only
be seen in many-body (A = 3 and higher) systems.



Effective interactions

Example: Okubo-Lee-Suzuki-Okamoto (+...)
methodology:

Relative frame:
Start with some large cutoff

so that the low-lying spectrum
is correct (N, ~ 250 — 1000 ),

max

This relative space is too large to
handle in a many-body calculation

rel cutoff

We want to truncate to some
smaller N, ~2—-10...

but want the correct spectrum
In this smaller space

18
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Effective interactions

We follow the Okubo-Lee-Suzuki-Okamoto (+...)
methodology:

Relative frame:
We introduce a unitary trans-

formation in the relative space
which decouples the smaller N
model space (dim N_..,)

from the larger cutoff space

max

H — N

rel cutoff

HreI - H,rel=u+HreIU

After this we transform to
the lab frame.

(NB: in the Iab frame, the unitary transformation
induces three-body, four-body, etc. forces)
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Effective interactions

An alternative one for the unitary fermi gas is the Alhassid-Bertsch-Fang,
which yields (in h.o. space) a separable interaction.
Relative frame:
Here the unitary transformation
is only implied, not explicit.
The result depends only N
on Nmax’ not Ncutoff'

max

HreI

V., = U'(H,+V)U-H,




Alhassid et al PRL 100 230401 (2008)
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FIG. 1: Convergence in Npmax for the A = 3 ground-state

energy. (a) E(Q) versus Nmax for ¢ = 3. Open circles corre-
spond to the renormahzed contact interaction and solid circles

to the interaction defined by (8) and (10). (b) AE  versus
Nmax in a logarithmic scale. All energies are in umts s of Aw.

g+1 = dimension in relative space (max relative excitement
is 2q hw) = cutoff in relative harmonic oscillator
= "V-low-N,, .,
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FIG. 2: Convergence of the g-regulated energies for the A = 3
ground state. (a) E9 versus q for both interactions (symbols
and units as in Fig. 1). The dotted line is the exact ground-

state energy. (b) The error |§E(?| in a logarithmic scale.

After extrapolating to large N ;, for fixed g (cut-off), must
extrapolate to large g.



Using Okubo-Lee-Suzuki; requires large initial cutoff

A=3
orbital truncation (NCu off = 1000)
I I I
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6.2

52

A=4

orbital truncation (ABF effective interaction)
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Egs (hw)
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A=5

orbital truncation (ABF effective interaction)
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The same “energy” or Nhw truncation as used in the
“no-core shell model” in nuclear physics

A=3
energy truncation (N_ .= 1000)
428 —
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=
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The same “energy” or Nhw truncation as used in the

“no-core shell model” in nuclear physics - slow convergence
(see also Stetcu et al, PRA 76 063613 (2007))

A=4
range = 0 (unitary limit)
I I I
64—
i G © energy trunc
6o (>—6) orbit Nmo del
' i —¢ orbit N il
6L &— orbit NIno del
Zs538
ED L
56
54+
52+
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What's behind the slow convergence?
The culprit seems to be the zero range.

We can test this by using a finite square well but with
infinite scattering length.



4.9

4.8
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4.2

A=3
range=025b

I | I

G - © energy trui
—6 orbit Nmo i
[+—7 orbit N

&— orbit NIno A&

max (orbits)



A=4
range =0.33 b

& - © energy trui
(3—) orbit Nmo &
+— orbit N_ 4

G—o orbit Nmo &




Making effective interactions more effective

“Hard core” or short range makes calculations troublesome.

Hence, one creates a renormalized effective interaction
that implicitly accounts for the sums to high-momentum states,
today via unitary transformations

A renormalized effective interaction is numerically
more tractable, but still doesn’t give the right spectrum.

This is often traced back to the need for 3-body forces.
Effective interactions also induce 3- (and A-) body forces.
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Making effective interactions more effective

Therefore one often tweaks a renormalized realistic interaction
in order to make it agree better with data.

cf Brussaard and Glaudemans, Ch.7
more recent: Brown and Richter, PRC 74 034315 (2006) (“USDA”, “USDB”)
and others...



Therefore one often tweaks a renormalized realistic interaction
1n order to make 1t agree better with data.

Given a Hamiltonian H, compute some set of
levels (over many nuclei) qa> with energies E, ;
let E ° be the experimental (target) energies.

Want to minimize X2 = E(Eg — Ea)z

Let H—H+ E (SCiHi Hellmann-Feynman theorem:
é)Ea é)Ea =<(X‘IA{i a>
oc. oc.

l l

and E,—E,+ ¥,

Here we’re working in the lab frame and adjusting the

two-body matrix elements Vi



Let H—H+»dcH,
' JE

and £ —FE_+
oc,

Want to minimize X2 E(ES ~ Ea)2

2

=Y |E,-E, EaE /dc, - dc,

o



Want to minimize X2 = E(Eg — Ea)z
2
28 =0 ‘ E

doc,

IR

2
E)-E,- Y JE,/dc, 6c,.)

EaE“ ok

ok ,
dc; oc; 5C'=E (Eg_Ea)

. ! de,

J\ @ a

This has the form BTBE = BT6E



Formally the solution to BTBE — BT6E
o T\ BT r b
s ¢=(B'B) B'oE  but

ok

B = é’ca may be singular or nearly so

l

Thus one does a singular value decomposition—
find the eigenvalues of B'B and truncate.



SVD eigenvalues
for USDB in sd-shell

eigenvalue ( D, )

108
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T

| ' ! ! |
20 40
linear combination number
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What about “realistic” effective nuclear interactions?

Q: What does it mean to be “realistic”?

A: Match experimental data!

38



Life cycle of a realistic interaction:

Choose a form (local,
contact + gradients, [ >
meson-exchange, etc.)

Fit relative V to 2-body data:
phase shifts + deuteron

YES | > | Publish H

Good
agreement?

ﬁ No > | Publish ?
Put into Output two-body Transform from relative
many-body <: matrix elements <: frame to lab frame via
calculation V(ab,cd) Moshinsky brackets
(CI, CC, etc)




Life cycle of a realistic interaction:

Fit relative V to 2-body data:
phase shifts + deuteron

Here is where one needs to H
“renormalize” the short-range/ f?
high momentum part of the _ -
interaction 1

Today this renormalization is

accomplished via unitary Transform from relative
transformations that frame to lab frame via
preserve two-body data Moshinsky brackets

(phase shifts, bound states)

40



Some common unitary transformations are
Okubo-Lee-Suzuki, V. ,, and the similarity
renormalization group (SRG).

They all have the same goal: soften the short-range/high-p
behavior while preserving two-body (on-shell) data. In other
words, they modify the off-shell behavior, which can only
be seen in many-body (A = 3 and higher) systems.

There have been some other attempts to choose
different off-shell behavior, e.g., the INOY
and JISP16 interactions.



They all have the same goal: soften the short-range/high-p
behavior while preserving two-body (on-shell) data. In other
words, they modify the off-shell behavior, which can only
be seen in many-body (A = 3 and higher) systems.

ﬁeﬁ - U'HU = ¢ He"
4 )

Can we choose the best
generator A of the unitary

W/
o, > transformation...
"‘C&/ ithe same way we fitted semi-

empirical interactions?




Never waste a crisis, or,
Cracking the off-shell degrees of freedom
in in "realistic” interactions
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Making Effective Interactions Move Effective
Part 3: Cracking the off-shell degrees of freedom in in "realistic” interactions

VaN

A Modest P I: S-17r71 A7y A
odaces roposa Heﬁ — U HU — e He

/We can expand the antisymmetric operator A )
in a series of “base” operators: A — E c A

Then we can find perturbations of the umtary

transformation H ~ H + E [ H A ]

9/

J
/\/V < Then we compute A
> B, = Za <O“[121’Ai] a)

Jc.

l

and do SVD as before...
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Making Effective Interactions Move Effective

Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions

W/
&

VaN

H, = U"'HU = ¢ He"

/T his is just like the SVD fits to semi-empirical
interactions such as USDB, GXPF], etc, except

\

USDB etc: work in lab frame, perturb Hamiltonian

New: we perturb the generators of the unitary
transformation in the relative frame

/

/i)
B.=§

g &C“ = <a‘[1¢1,2&i]

i

@)



Making Effective Interactions Move Effective
Part 3: Cracking the off-shell degrees of freedom in in "realistic” interactions

Sample application: cold atomic gases at unitarity i a harmonic trap

n B> .
= D=V @ -V, D8 )

I i<j

V, tuned for infinite scattering length
(cutoff-dependent)

000 000
@ ©

46



Making Effective Interactions Move Effective
Part 3: Cracking the off-shell degrees of freedom in in “realistic” interactions

Sample application: cold atomic gases at unitarity i a harmonic trap

2
Only s-wave channel F = E—h—V +1imQ°r’ -V E(S(r —7)
in relative coordinates i< j

Slow convergence ;
in CI calculations.

i

nn

= u

6.5 d ]

Use ABF regularization
Alhassid, Bertsch, Fang, PRL100,

230401(2008)

with cutoff of 10hQ 1 \ )
(in relative s-channel) T l o

1 1 1 1
4 6 8 10 12

55
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Making Effective Interactions Move Effective
Part 3: Cracking the off-shell degrees of freedom in in "realistic” interactions

Sample application: cold atomic gases at unitarity i a harmonic trap

Use ABF regularization
with cutoff of 10hQ
(in relative s-channel).

/ 3hQ pf

In lab frame, cutoff of 3hQ) 2hQ sd
1hQ p

For preliminary study: 0hQ s

Fitto A=3,1, 0"
A=4,0"1" 27

orto A =23-10 g.s.

MSU Feb 2010 48



Making Effective Interactions Move Effective
Part 3: Cracking the off-shell degrees of freedom in in "realistic” interactions

Sample application: cold atomic gases at unitarity in a harmonic trap

Fit to 5 states in A = 3,4;
“prediction” is comparison against g.s. of all A= 3-10
(all energies in units of trap hw)

starting H,, initial rms fit rms rms of
prediction

bare 0.62 0.10 0.32
ABF 1.06 0.06 0.37

Fit to g.s. energies of A= 3-10
(all energies in units of trap hw)

bare 1.16 0.28
ABF 2.32 0.25
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Making Effective Interactions Move Effective
Part 3: Cracking the off-shell degrees of freedom in in "realistic” interactions

Sample application: cold atomic gases at unitarity i a harmonic trap

Using only 1 generator (d/dr)

| | | | | | ®
20— ® 'Bare" N
U-transformed ®
| % “exact” -
#
15— I
®
B _
N 7
20 L g
m 10— * I
&
B i h
*
S § m
B
0 | | | | | | | |
3 4 5 6 7 8 9 10
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Making Effective Interactions Move Effective

Conclusions and summary

I have discussed two powerful tool for analyzing and “improving”
effective interactions:

-- Singular value decomposition, to find most important degrees
of freedom when htting to data

-- similar behavior both with empirical and random interactions

- Unitary transformations, to adjust off-shell matrix elements



Making Effective Interactions Move Effective

Conclusions and summary

I have developed a general formalism using unitary transformations
that (a) preserve desired properties (on-shell matrix elements,
eigenvalues) and (b) can be fitted to data.

Preliminary application to a cold atomic gas at unitarity 1s promising.

2 . )
s‘I‘/,,V {\T ext step: apply to nuclgar systems
; ) (more complicated, multi-channel;
LS not only binding energies, but also spin-orbit
splitting usually attributed to 3-body forces)

N J




