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Outline

• Introduction: thermalisation

• Thermalisation protocol: sudden turn on of system (S) - 
bath (B) coupling

• Canonical Typicality and Eigenstate Thermalisation 
Hypothesis

• exact diagonalization:  small (2+7 sites) Hubbard ring

• (A) Long time: thermalisation as function of S-B 
coupling

• (B) Dynamics of thermalisation
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Thermalisation

• subsystem reaches equilibrium with bath through energy/particle 
exchange

• independent of the initial subsystem state

• independent of microscopic details of the bath:  only macroscopic 
quantities matter,  eg.  

• loss of coherence/entanglement with bath

• states of the subsystem are occupied with probability given by Gibbs 
distribution

T, µ
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Thermalisation:  main results here

• Thermalisation in a small closed quantum system?

• yes, for surprisingly small systems

• dynamics of approach to thermalisation:  
exponential and Gaussian regimes 

 S. Genway,  A.F. Ho and D.K.K. Lee,  PRL 105,  260402 (2010)
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Thermalisation

• prepare system in product state of decoupled system and bath:

• switch on coupling        suddenly:  Dynamics of the Hubbard Model

• unitary evolution: 

• Subsystem described by reduced density matrix

• diagonal elements              = occupation probabilities of 
subsystem states:   becomes Gibbs distribution/canonical 
ensemble?

• off-diagonal elements   = quantum coherence / entanglement:         
shrinks to zero?

Thermalisation

H = HS +HB + λV
• Procedure

• prepare system in product state of decoupled system and bath:

|Ψ(0)〉 = |s0b〉 ≡ |s0〉 ⊗ |b〉

←− 1

N1/2
shell

∑

energy shell
εb∈[E0,E0+δb]

|εb〉

• switch on coupling λV suddenly: Dynamics of the Hubbard
Model

• unitary evolution: |Ψ(t)〉 = e−iĤt|Ψ(0)〉
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ρ(t) ≡ Trbath|Ψ(t)〉〈Ψ(t)|
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Canonical Ensemble

• Gibbs-Boltzmann distribution

• subsystem state       with energy

• temperature defined from:

Canonical Ensemble
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ρ ∝
∑

s

Nbath(E0 − εs)|s〉〈s|

∼
∑

s

e−βεs |s〉〈s| for large bath (E0 & εs)

• temperature defined from: β ≡ 1
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Canonical Typicality

• Pick a random state 

• Reduced density matrix      is 
approximately thermal  for almost all 
choices of

Goldstein et al. PRL 96, 050403 (2006)
Popescu et al. Nature Phys. 2, 754 (2006)
Canonical Typicality

• Pick a random state
• |Ψ〉 =

∑

A

CA|EA〉

|EA〉: eigenstate of whole system
• CA "= 0 only in energy shell:

[E0, E0+δ]
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all choices of |Ψ〉
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Eigenstate Thermalisation Hypothesis

• Project eigenstate         to subsystem state       (energy     ):

•  subsystem thermal behaviour encoded into

•  For any state                         , time average                         is 
is the thermal state independent of 

Srednicki PRE 50, 888 (1994),   Rigol et al., Nature 452, 854 (2008)
Eigenstate Thermalisation Hypothesis

Srednicki PRE 50, 888 (1994), Rigol et al., Nature 452, 854 (2008)

• Project eigenstate |EA〉 to subsystem state |s〉 (energy εs):
Ps ≡
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Eigenstate Thermalisation HypothesisEigenstate Thermalisation Hypothesis

Rigol et al., Nature 452, 854 (2008)
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Hamiltonian
Hamiltonian

HS = −
∑

σ=↑,↓
Jσ(c

†
1σc2σ + h.c.) + U(n1↑n1↓ + n2↑n2↓)

HB = −
L−1∑

i=3

∑

σ=↑,↓
Jσ(c

†
iσci+1,σ + h.c.) + U

L∑

i=3

ni↑ni↓

λV = −λ
∑

σ=↑,↓
Jσ

[
(c†2σc3σ + c†1σcLσ) + h.c.

]

• 8 fermions: 4↑, 4↓
• Jσ = J(1 + ξsgnσ), ξ = 0.05

• U = J = 1

• 15876 energy levels

• 16 subsystem energy levels

• λ = 1 → homogeneous ring
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Initial StateInitial States

• Product states

|Ψ(t = 0)〉 = |s〉 1

N1/2
shell

∑

b∈shell
|εb〉

overlaps many exact eigenstates
|EA〉 in energy shell

• Switch on λV for t > 0

• Evolve ρ(t) = Trbath
(
|Ψ(t)〉〈Ψ(t)|

)

with |Ψ(t)〉 = e−iHt|Ψ〉
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Subsystem evolutionSubsystem Evolution

Diagonal elements of ρ (U/J = λ = 1)
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Subsystem evolutionSubsystem Evolution
Off-diagonal elements of ρ (U/J = λ = 1)

|a〉 = 1√
2

(
| ↑, 0〉+ |0, ↑〉

)
, |b〉 = 1√

2

(
| ↑, 0〉 − |0, ↑〉

)
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(A)  Long-time averages show thermalisationLong-time averages show thermalisation

 0
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r s
s

E
0

!
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!
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"=0.5

Initial states
| ↑↓, ↑〉 (solid)
| ↑, ↑〉 (dashed)
| ↑, ↓〉 (dotted)
thermal (black)
δ = 0.5

|ε1,2,3,4〉: subsystem eigenstates with 2 fermions and Sz = 0
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Effective TemperatureEffective Temperature

Teff down to quantum degeneracy for λ ! 1
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Memory of Initial StateMemory of Initial State

Loss of memory for wide range 0.1 ! λ ! 4

∆r =
1
2

∑

s

[
〈ρ2

ss〉 − 〈ρss〉2
]1/2
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Closeness to the Thermal StateCloseness to the Thermal State

Subsystem thermalises for λ ! 0.1

σω =
1
2

∑

s

〈|ρss − ωss|〉
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Eigenstate Thermalisation
Eigenstate Thermalisation

Projections on to
subsystem ground
state :

〈EA|Ps|EA〉

Ps =
∑

b |sb〉〈sb|
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(B)  Dynamics of ThermalisationDynamics of Thermalisation

How does the subsystem reach thermalisation?
Initial state |εs〉 = | ↑, ↑〉 with composite energy E0 = −2

 0

 0 .2

 0 .4

 0 .6

 0 .8

 1

 0  80  160  240

!
s

s
(t

)

t

"=0.1

 0  0 .5  1  1 .5  2
t

t1

"=1

small λ ←−−→ larger λ
Exponential, Ae−γt + const ←−−→ Gaussian A′e−Γ2t2 + const

Monday, 25 April 2011



Short Time Dynamics:  perturbation theoryShort Time Dynamics

• Initial state |Ψ(t = 0)〉 = |s0〉
1

N1/2
shell

∑

b∈shell
|εb〉

• Times greater than t1 = 1/4J = 1/single-particle bandwidth
• Perturbation theory for small λ

ρss(t)=
4λ2

Nshell

∑

b′

∣∣∣∣∣

bu∑

b=bl

sin[(Es′b′−Esb)
t
2 ]

Es′b′ − Esb
〈sb|V |s0b〉

∣∣∣∣∣

2

Fermi Golden Rule:
dρss
dt

= −γFGR ∝ λ2

.....start of an exponential decay for small λ
• ”Very short” times: t % t1

• just one hop: |Ψ(t)〉 = e−iHt|Ψ(0)〉 & (1− iHt)|Ψ(0)〉

ρss(t) & 1− Γ2
shortt

2 with Γshort = λ

[
∑

sb

|〈sb|V |Ψ(0)〉|2
]1/2

.... start of Gaussian for λ > 1
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.....start of an exponential decay for small λ
• ”Very short” times: t % t1

• just one hop: |Ψ(t)〉 = e−iHt|Ψ(0)〉 & (1− iHt)|Ψ(0)〉

ρss(t) & 1− Γ2
shortt

2 with Γshort = λ

[
∑

sb

|〈sb|V |Ψ(0)〉|2
]1/2

.... start of Gaussian for λ > 1
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Relaxation Rates
Relaxation rates

Points:
Fits to Gaussian/
exponential curves

Lines:
γFGR ∝ λ2

Γshort ∝ λ
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Is Gaussian Behaviour Generic?
Is Gaussian Behaviour Generic?

• Gaussian rate Γ ∼ Γshort short-time rate?
• exponential behaviour excluded if FGR rate becomes

comparable to Γshort (single particle hopping rate)
• Γshort ∼ λJ ∼ λ independent of system size: Gaussian regime

persists to larger systems?
• fast decoherence after hopping into bath:

short inelastic scattering length ∼ lattice spacing
(linel ∼ J2/U2 for small U/J and states far from Fermi level)

• Test numerically by considering
• Random couplings between system and bath:

〈sb|V |s′b′〉 replaced with random numbers, preserving Tr(V 2)
• Bose-Hubbard model
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Random CouplingsRandom Couplings

Shift in crossover.
Here t−1

1 = full
bandwidth ∼ 20
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Bose-Hubbard Model
Bose-Hubbard Model

γFGR, Γshort (lines)
Fits to Gaussian/
exponential curves
(points)

7 bosons on 9+2
sites, U = J = 1

initial state: no

boson in subsystem
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Conclusions

• Understanding thermalisation of systems from a 
purely quantum-mechanical perspective is possible

• Surprisingly small Hubbard-model systems in pure 
states demonstrate subsystem thermalisation for a 
range of coupling strengths: short inelastic length

• Dynamics is strongly dependent on coupling 
strength, with Gaussian behaviour seen at 
moderate/strong coupling strength

• Believe that the Gaussian behaviour is generic and 
that it holds in the limit of large bath
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