Reaching Thermal States in Quantum Systems

Andrew Ho Royal Holloway, University of London

INT, University of Washington, April 2011

Collaboration:

Sam Genway, Derek Lee (Imperial College London)

Thanks: funding: EPSRC (UK) discussions: John Chalker, Miguel Cazalilla

S. Genway, A.F. Ho and D.K.K. Lee, PRL 105, 260402 (2010)

Outline

- Introduction: thermalisation
- Thermalisation protocol: sudden turn on of system (S) bath (B) coupling
- Canonical Typicality and Eigenstate Thermalisation Hypothesis
- exact diagonalization: small (2+7 sites) Hubbard ring
 - (A) Long time: thermalisation as function of S-B coupling
 - (B) Dynamics of thermalisation

Thermalisation

- subsystem reaches equilibrium with bath through energy/particle exchange
- independent of the initial subsystem state
- independent of microscopic details of the bath: only macroscopic quantities matter, eg. T,μ
- loss of coherence/entanglement with bath
- states of the subsystem are occupied with probability given by Gibbs distribution

Thermalisation: main results here

- Thermalisation in a small closed quantum system?
 - yes, for surprisingly small systems
 - dynamics of approach to thermalisation: exponential and Gaussian regimes

S. Genway, A.F. Ho and D.K.K. Lee, PRL 105, 260402 (2010)

- prepare system in product state of decoupled system and bath: $|\Psi(0)\rangle = |s_0b\rangle \equiv |s_0\rangle \otimes |b\rangle \qquad \leftarrow \frac{1}{N_{\text{shell}}^{1/2}} \sum_{\substack{\text{energy shell}\\ \in C[E_0, E_0+\delta_1]}} |\epsilon_b\rangle$
- switch on coupling λV suddenly: Dynamics of the Hubbard Model
- unitary evolution: $|\Psi(t)\rangle = e^{-i\hat{H}t}|\Psi(0)\rangle$
- Subsystem described by reduced density matrix

 $\rho(t) \equiv \mathrm{Tr}_{\mathrm{bath}} |\Psi(t)\rangle \langle \Psi(t)|$

- diagonal elements $\langle s | \rho | s \rangle$ = occupation probabilities of subsystem states: becomes Gibbs distribution/canonical ensemble?
- off-diagonal elements = quantum coherence / entanglement: shrinks to zero?

Canonical Ensemble

- Gibbs-Boltzmann distribution
 - subsystem state $|s\rangle$ with energy ε_s

$$\rho \propto \sum_{s} N_{\text{bath}}(E_0 - \varepsilon_s) |s\rangle \langle s|$$

$$\sim \sum_{s} e^{-\beta \varepsilon_s} |s\rangle \langle s| \quad \text{for large bath } (E_0 \gg \varepsilon_s)$$

• temperature defined from:

$$\beta \equiv \frac{1}{k_{\rm B}T} = \left. \frac{d\ln N_{\rm bath}}{dE} \right|_{E_0}$$

Canonical Typicality

Goldstein et al. PRL 96, 050403 (2006) Popescu et al. Nature Phys. 2, 754 (2006)

- Pick a random state
 - |Ψ⟩ = ∑_A C_A |E_A⟩
 |E_A⟩: eigenstate of whole system
 C_A ≠ 0 only in energy shell: [E₀, E₀+δ]
- Reduced density matrix ho is approximately thermal for almost all choices of $|\Psi
 angle$

Eigenstate Thermalisation Hypothesis

Srednicki PRE 50, 888 (1994), Rigol et al., Nature 452, 854 (2008)

• Project eigenstate $|E_A\rangle$ to subsystem state $|s\rangle$ (energy ε_s):

 $P_s\equiv\sum_b |sb
angle\langle sb|$ for product states |sb
angle

Hypothesis: $\langle E_A | P_s | E_A \rangle \simeq e^{-\beta \varepsilon_s}$

• subsystem thermal behaviour encoded into $|E_A\rangle$

$$\begin{array}{cccc} \vdots & = & \vdots & \vdots \\ |E_{352}\rangle & = & |\varepsilon_1\rangle|\epsilon_{172}\rangle \\ |E_{351}\rangle & = & |\varepsilon_2\rangle|\epsilon_{98}\rangle \\ |E_{350}\rangle & = & |\varepsilon_1\rangle|\epsilon_{171}\rangle \\ \vdots & = & \vdots & \vdots \end{array} \right\} \xrightarrow{\lambda V} e^{-\beta\varepsilon_1}|\varepsilon_1\rangle|B_1\rangle + e^{-\beta\varepsilon_2}|\varepsilon_2\rangle|B_2\rangle + \dots$$

• For any state $|\Psi\rangle = \sum_{A} C_{A} |E_{A}\rangle$, time average $\overline{\rho_{ss}} = \sum_{A} |C_{A}|^{2} \langle E_{A} |P_{s}|E_{A}\rangle$ is the thermal state independent of C_{A}

Eigenstate Thermalisation Hypothesis

Rigol et al., Nature 452, 854 (2008)

Hamiltonian

$$H_{S} = -\sum_{\sigma=\uparrow,\downarrow} J_{\sigma}(c_{1\sigma}^{\dagger}c_{2\sigma} + \text{h.c.}) + U(n_{1\uparrow}n_{1\downarrow} + n_{2\uparrow}n_{2\downarrow})$$

$$H_B = -\sum_{i=3}^{L-1} \sum_{\sigma=\uparrow,\downarrow} J_{\sigma} (c_{i\sigma}^{\dagger} c_{i+1,\sigma} + \text{h.c.}) + U \sum_{i=3}^{L} n_{i\uparrow} n_{i\downarrow}$$
$$\lambda V = -\lambda \sum_{\sigma=\uparrow,\downarrow} J_{\sigma} \left[(c_{2\sigma}^{\dagger} c_{3\sigma} + c_{1\sigma}^{\dagger} c_{L\sigma}) + \text{h.c.} \right]$$

- 8 fermions: 4 \uparrow , 4 \downarrow
- $J_{\sigma} = J(1 + \xi \mathrm{sgn}\sigma)$, $\xi = 0.05$
- U = J = 1
- 15876 energy levels
- 16 subsystem energy levels
- $\lambda=1 \rightarrow$ homogeneous ring

Initial State

Initial State

- Product states $|\Psi(t=0)\rangle = |s\rangle \frac{1}{N_{\rm shell}^{1/2}} \sum_{b\in {\rm shell}} |\epsilon_b\rangle$ overlaps many exact eigenstates $|E_A\rangle \text{ in energy shell}$
- Switch on λV for t > 0
- Evolve $\rho(t) = \text{Tr}_{\text{bath}}(|\Psi(t)\rangle\langle\Psi(t)|)$ with $|\Psi(t)\rangle = e^{-iHt}|\Psi\rangle$

Subsystem evolution

Diagonal elements of ρ $(U/J = \lambda = 1)$

Subsystem evolution

Off-diagonal elements of ρ ($U/J = \lambda = 1$)

(A) Long-time averages show thermalisation

 $|\varepsilon_{1,2,3,4}\rangle$: subsystem eigenstates with 2 fermions and $S_z = 0$

Effective Temperature

 $T_{\rm eff}$ down to quantum degeneracy for $\lambda \lesssim 1$

Memory of Initial State

Loss of memory for wide range $0.1 \lesssim \lambda \lesssim 4$

Closeness to the Thermal State

Subsystem thermalises for $\lambda\gtrsim 0.1$

Eigenstate Thermalisation

(B) Dynamics of Thermalisation

How does the subsystem reach thermalisation? Initial state $|\varepsilon_s\rangle = |\uparrow,\uparrow\rangle$ with composite energy $E_0 = -2$

Short Time Dynamics: perturbation theory

- Initial state $|\Psi(t=0)\rangle = |s_0\rangle \frac{1}{N_{\text{shell}}^{1/2}} \sum_{b \in \text{shell}} |\epsilon_b\rangle$
- Times greater than $t_1 = 1/4J = 1/single-particle bandwidth$
 - Perturbation theory for small λ

$$\rho_{ss}(t) = \frac{4\lambda^2}{N_{\text{shell}}} \sum_{b} \left| \sum_{b_i=b_l}^{b_u} \frac{\sin[(E_{sb} - E_{s_0b_i})\frac{t}{2}]}{E_{sb} - E_{s_0b_i}} \langle s \ b \ |V|s_0 \ b_i \rangle \right|^2$$

Fermi Golden Rule:
$$\frac{d\rho_{ss}}{dt} = -\gamma_{FGR} \propto \lambda^2$$

.....start of an exponential decay for small $~\lambda$

- "Very short" times: $t \ll t_1$
 - just one hop: $|\Psi(t)\rangle = e^{-iHt}|\Psi(0)\rangle \simeq (1-iHt)|\Psi(0)\rangle$

$$\rho_{ss}(t) \simeq 1 - \Gamma_{\rm short}^2 t^2 \text{ with } \Gamma_{\rm short} = \lambda \left[\sum_{sb} |\langle sb| V |\Psi(0) \rangle|^2 \right]^{1/2}$$

.... start of Gaussian for $\lambda > 1$

Relaxation Rates

Is Gaussian Behaviour Generic?

- Gaussian rate $\Gamma \sim \Gamma_{\text{short}}$ short-time rate?
 - exponential behaviour excluded if FGR rate becomes comparable to Γ_{short} (single particle hopping rate)
 - $\Gamma_{\rm short} \sim \lambda J \sim \lambda$ independent of system size: Gaussian regime persists to larger systems?
 - fast decoherence after hopping into bath: short inelastic scattering length \sim lattice spacing $(l_{\rm inel} \sim J^2/U^2$ for small U/J and states far from Fermi level)
- Test numerically by considering
 - Random couplings between system and bath: $\langle sb|V|s'b'\rangle$ replaced with random numbers, preserving Tr (V^2)
 - Bose-Hubbard model

Random Couplings

Bose-Hubbard Model

Conclusions

- Understanding thermalisation of systems from a purely quantum-mechanical perspective is possible
- Surprisingly small Hubbard-model systems in pure states demonstrate subsystem thermalisation for a range of coupling strengths: short inelastic length
- Dynamics is strongly dependent on coupling strength, with Gaussian behaviour seen at moderate/strong coupling strength
- Believe that the Gaussian behaviour is generic and that it holds in the limit of large bath