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The nuclear landscape

* Nuclear systems are complex many-
body systems with rich properties

e No “one size fits all”’ method

* All theoretical approaches need to be
linked

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory
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Density Functional Theory A>100

Coupled Cluster, Shell Model
A<100

- Exact methods A<12
- GFMC, NCSM
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o) Chiral EFT interactions
(low-energy theory of QCD)
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Neutron Number

Nucleonic matter:
Infinite system of interacting neutrons
and protons in the thermodynamic limit.



Significance of nuclear/neutron matter results

e for the extremes of astrophysics: 4U1728-34
A X-ray burst R
PR\  SN1987a

neutron stars, supernovae,

: "z Y

-

neutrino interactions with nuclear matter

* constraining microscopically energy-density functionals, next-generation

Skyrme functionals, density matrix expansion

T

= 557 + Al + Blolr + Clo]| Vo™ + -

* universal properties at low densities, can be probed in experiments with

ultracold Fermi gases

* my focus: development of efficient methods to include 3N forces in

microscopic many-body calculations of neutron/nuclear matter and finite nuclei



Wavelength and resolution

size of resolvable structures depends on the wavelength
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Question: Which resolution should we choose?

Depends on the system and phenomena we are interested in!
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Resolution: The higher the better?

in the nuclear physics here we are interested in low-energy observables

(long-wavelength information!)
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* resolution of very small (irrelevant) structures can obscure this information

* small details have nothing to do with long-wavelength information!



Strategy: Use a low-resolution version

* long-wavelength information is preserved
* distortion at small distance significantly reduced

* much less information necessary
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In nuclear physics:
Use renormalization group (RG) to change resolution!
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Problem: Traditional ““hard” NN interactions
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* constructed to fit scattering data (long-wavelength information!)
* “hard” NN interactions contain repulsive core at small relative distance

* strong coupling between low and high-momentum components, hard to solve!

4 )
Claim:
Problems due to high resolution from interaction.

These interactions correspond to using beer coasters.
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Changing the resolution:
The (Similarity) Renormalization Group

* goal: generate unitary transformation of “hard” Hamiltonian

H, = UAHU;L\ with the resolution parameter A\

- . dH
* basic idea: change resolution in small steps: = NN, H )\
1 -1
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* SRG only one possibility, also:View K, UCOM, Lee-Suzuki...



Changing the resolution:
The (Similarity) Renormalization Group

k' (fm™")
!0.5

* elimination of coupling between low- and high momentum components,
calculations much easier!

* observables unaffected by resolution change (for exact calculations)

* residual resolution dependences can be used as tool to test calculations
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Not the full story:
RG transformation also changes three-body (and higher-body) interactions!
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Why are there 3N forces!?

Classical analog

Tidal effects lead to 3N forces in earth-sun-moon system:

arst Cuarter

from =nn

& ™. Tidal bulge

* force between earth and moon depends on the position of sun

¢ tidal deformations are internal excitations

* nucleons are composite particles, can also be excited

* change of resolution changes the excitations that can be

described explicitly —— change of 3N force

¢ three-nucleon forces are crucial at low resolutions!



Basics concepts of chiral effective field theory

* choose effective degrees of
freedom: here nucleons and pions

* short-range physics captured in
few short-range couplings

e separation of scales: Q << A,
breakdown scale A,~500 MeV

®* power-counting:
expand in powers Q/A,

* systematic: work to desired
accuracy, obtain error estimates

4 N\
Plan: Use EFT interactions

as input to RG evolution.
- J
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Leading order chiral 3N forces o
A
NN 3N 4N |
LO O (%) long (2m) intermediate () short-range
¢-—-r--9 -—-¢

C1, €3, C4 terms cp term Ccg term

; ,
* large uncertainties in 27 coupling
constants at present:
N2LO O (%) + H ey = —0.9192 oy = —4.7t15 o = 35105

leads to theoretical uncertainties in
many-body observables

310 0 () i P E :
N*LO O (%) | * cp and cg have to be determined
‘ ‘ ‘ in A= 3 systems



Chiral 3N interaction as density-dependent two-body interaction

(1) calculate antisymmetrized 3N interaction

/

(2) construct effective density-dependent NN interaction

Basic idea:
Sum one particle over occupied
states in the Fermi sea

v/

Van

O
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(3) combine with free-space NN interaction

combinatorial factor c depends
on type of diagram!
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Properties of the effective interaction V3n

General momentum dependence:

Vin = Van(k, k', P)

e P-dependence much weaker than k, k’-dependence!
* neglect P-dependence,set P = 0

* matrix elements have the same form like free-space
NN interaction matrix elements
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P/2+k P/2 - K

P/2+k P/2-k

* straightforward to include in existing many-body schemes
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Properties of the effective interaction Vx

(Asy = 2.0fm™")
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Equation of state: Many-body perturbation theory
central quantity of interest: energy per particle £/N

H()\) =T + VNN(A) -+ VSN()\) -+ ...

b= O kinetic energy

+ @@:} + V:) Hartree-Fock

+ + @g : @ ’ @} ¥ @@ 2nd-order

3rd-order
ERE and beyond

* “hard” interactions require non-perturbative summation of diagrams
* with low-momentum interactions much more perturbative
* inclusion of 3N interaction contributions



Energy/nucleon [MeV]

Equation of state of pure neutron matter
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KH and Schwenk PRC 82,014314 (2010)

significantly reduced cutoff dependence at 2nd order perturbation theory
small resolution dependence indicates converged calculation

energy sensitive to uncertainties in 3N interaction

variation due to 3N input uncertainty much larger than resolution dependence

good agreement with other approaches (different NN interactions)



Neutron matter:
Symmetry energy

K
E(p,a=1) = —ay A 185(2) (0 = po)* + S2(p)
S2(p) = as + 9 (p — po)
Po
c1 |GeV] c3 |GeV] ay [MeV] po [MeV fm ™
—0.81 —3.2 31.7 2.4/2.5
~0.81 —5.7 33.7 2.9/3.0
—0.7 —3.2 31.7 2.4/2.5
1.4 —5.7 34.5 3.3/3.4

* uncertainties in C; couplings lead to uncertainties in symmetry energy

e given the experimental constraint a4 = 30 =4 MeV
smaller absolute values of C3 seem to be preferred from our results




Ve (r) [MeV]

Equation of state

of symmetric nuclear matter

300 ———————————
1SO channel
Soo ] i “Very soft potentials must
: | | be excluded because they
repulsive L o | do not give saturation;
100 | core . pwo T they give too much binding
I | | and too high density. In
l | | particular, a substantial
or tensor force is required.”
Bonn Hans Bethe (1971)
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-100 _— AV18 " [fm] m
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* empirical saturation at ng ~ 0.16 fm~ and FEbinding/N ~ —16 MeV
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Equation of state of symmetric nuclear matter
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* empirical saturation at ng ~ 0.16 fm~ and FEbinding/N ~ —16 MeV

* nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions

* 3N forces are essential! Here: fit 3NF couplings to few-body systems:

_ _ _ /1 \
Esy = —8.482MeV and rige =195—1.96fm (4 >



Equation of state of symmetric nuclear matter

Energy/nucleon [MeV]
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* saturation point consistent with experiment, without new free parameters

* cutoff dependence at 2nd order significantly reduced

¢ 3rd order contributions small

* cutoff dependence consistent with expected size of 4N force contributions

-
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Bulk nuclear properties

efficiently described at low resolution!
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Hierarchy of many-body contributions

neutron matter nuclear matter
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* binding energy results from cancellations of much larger kinetic and potential
energy contributions

* chiral hierarchy of many-body terms preserved for considered density range

e cutoff dependence of natural size, consistent with chiral exp. parameter ~ 1/3



Constraints on the nuclear equation of state (EOS)

nature
A two-solar-mass neutron star measured using
Shapiro delay

P. B. Demorest!, T. Pennucci?, S. M. Ransom!, M. S. E. Roberts® & J. W. T. Hessels*®

30

Timing residual (us)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Orbital phase (turns)

Demorest et al., Nature 467, 1081 (2010)

Myax = 1.65Mg — 1.97 + 0.04 M,

Structure of a neutron star is determined by
Tolman-Oppenheimer-Volkov (TOV) equation:

ec? c2r

P _ GMe[  PI[ , 4wr®P)[  2GM -
dr 12 M c?

crucial ingredient: energy density ¢ = ¢(P)

Credit: NASA/Dana Berry

-— ions, electrons

-4—— electrons, neutrons, nucleii

neutron-proton Fermi liquid
few % electron Fermi gas

quark gluon plasma?



Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities.
Radius of a typical NS (M~1.4 M) theoretically not well constrained.

Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter —— neutron star matter

parametrize piecewise
high-density extensions of EOS:

* use polytropic ansatz
T
p~p
* range of parameters

I'1, p12, 12
limited by physics!

~N

log,,P [dyne/cm®]
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I
—— crust EOS

B ncutron star matter
with ¢, uncertainties
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log,,p [g/cm’]

KH et al., PRL 05, 161102 (2010)



Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities.
Radius of a typical NS (M~1.4 M) theoretically not well constrained.

Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter —— neutron star matter

[ N
| | | 37 |- —m— crust EOS T | o
2.5 NN only, EM B ncutron star matter : y
NN only, EGM — 36 - with ¢, uncertainties I : —
o - S !
= 20 S 35 + 1 S 5
o O 1 [
~ |
O i |
= 1.5 = : -
o — |
A A :
S 1.0} = . n
[ 1)) 1
A 2 |
05 — ; 1
0 | | | | | | N |
0 0.2 0.4 0.6 0.8 1.0 13.0 13.5 14 .0 'y 01
P 1po] log,,p [g/cm?] KH et al., PRL 05, 161102 (2010)

without 3N forces EOS differs significantly from crust EOS around pg/2



3.0

Neutron star radius
constraints
2.5 |
4 ) A
use the constraints:
2.0 b
recent NS observation MmaXT
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* low-density part of EOS sets scale for allowed high-density extensions

e radius constraint after incorporating crust corrections: 10.5 — 13.5 km



Constraints on neutron star equations of state

36

)
N

log,,P [dyne/cm’]

w
N

14.2 14 .4 14.6 14.8 15.0 15.2

3
log,,p [g/cm’] KH et al,, PRL 05, 161102 (2010)

* 1.97M neutron star and causality constrain nuclear equation of state
at high densities (esp. lower bound)

e very stiff EOS lead to low central densities in typical ns (2~ (2 —=2.5)p0 )



Cooling of neutron stars

® neutron star transparent to neutrinos — neutrino emission dominates

cooling process for about 10° years after formation

* Cooper pair formation dominant cooling process in young neutron stars,

superfluidity allows process 7 + n — [nn| + v + v

Spectacular 4% temperature drop in young neutron star within only 10 years!

/(extraction of approximate pairing gap size)

[ [ M [ g
2x10°
|83 Selected for a Viewpoint in Physics week endin
PRL 106, 081101 (2011) PHYSICAL REVIEW LETTERS 25 FEBRUARY 201 1
5’4
6 Rapid Cooling of the Neutron Star in Cassiopeia A Triggered
107 | by Neutron Superfluidity in Dense Matter
Dany Page,' Madappa Prakash,” James M. Lattimer,” and Andrew W. Steiner*
o)
5x10
Science Adrian Cho, 25 February 2011
5 Neutron Star Provides Direct Evidence for Bizarre Type of
2x107 t Nuclear Matter
9|
10
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Superfluidity in neutron and cooling of neutron stars

spin-singlet ('So): spin-triplet (3P2-3Fy):
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* pairing gap rather well constrained * only loosely constrained so far
* active at low densities * active at higher densities
* 3N force contributions moderate * 3N force contributions important
* only weakly affects cooling e crucial for cooling

(crustal cooling) (core cooling)



Conclusions

* derivation of density-dependent effective NN interactions from 3N
Interactions

¢ effective NN interaction efficient to use and accounts for 3N effects in
neutron and nuclear matter to good approximation

* good agreement with empirical symmetry energy and nuclear saturation
properties

* constraints for the neuton star equation of state and radii of neutron stars

* first investigation of triplet pairing in neutron stars including 3N forces
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