Chiral three-nucleon forces: From neutron matter to neutron stars

Kai Hebeler (OSU)

Seattle, May 2, 2011

Fermions from Cold Atoms to Neutron Stars: Benchmarking the Many-Body Problem

The nuclear landscape

- Nuclear systems are complex manybody systems with rich properties
- No "one size fits all" method
- All theoretical approaches need to be linked

Nucleonic matter:

Infinite system of interacting neutrons and protons in the thermodynamic limit.

Significance of nuclear/neutron matter results

• for the extremes of astrophysics:

neutron stars, supernovae,

neutrino interactions with nuclear matter

• constraining microscopically energy-density functionals, next-generation Skyrme functionals, density matrix expansion

UNEDF
$$\mathcal{E} = \frac{\tau}{2M} + A[\rho] + B[\rho]\tau + C[\rho]|\nabla\rho|^2 + \cdots$$

- universal properties at low densities, can be probed in experiments with ultracold Fermi gases
- my focus: development of efficient methods to include 3N forces in microscopic many-body calculations of neutron/nuclear matter and finite nuclei

Wavelength and resolution

size of resolvable structures depends on the wavelength

Question: Which resolution should we choose? Depends on the system and phenomena we are interested in!

Resolution: The higher the better?

in the nuclear physics here we are interested in low-energy observables (long-wavelength information!)

- resolution of very small (irrelevant) structures can obscure this information
- small details have nothing to do with long-wavelength information!

Strategy: Use a low-resolution version

- long-wavelength information is preserved
- distortion at small distance significantly reduced
- much less information necessary

In nuclear physics: Use renormalization group (RG) to change resolution!

Problem: Traditional "hard" NN interactions

- constructed to fit scattering data (long-wavelength information!)
- "hard" NN interactions contain repulsive core at small relative distance
- strong coupling between low and high-momentum components, hard to solve!

Claim: Problems due to high resolution from interaction. These interactions correspond to using beer coasters.

Changing the resolution: The (Similarity) Renormalization Group

- goal: generate unitary transformation of "hard" Hamiltonian $H_{\lambda} = U_{\lambda}HU_{\lambda}^{\dagger}$ with the resolution parameter λ
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$

• SRG only one possibility, also: Vlow k, UCOM, Lee-Suzuki...

Changing the resolution: The (Similarity) Renormalization Group

- elimination of coupling between low- and high momentum components, calculations much easier!
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations

Not the full story:

RG transformation also changes three-body (and higher-body) interactions!

Basics concepts of chiral effective field theory

- choose effective degrees of freedom: here nucleons and pions
- short-range physics captured in few short-range couplings
- separation of scales: Q << Λ_b , breakdown scale Λ_b ~500 MeV
- power-counting: expand in powers Q/Λ_b
- systematic: work to desired accuracy, obtain error estimates

Plan: Use EFT interactions as input to RG evolution.

Chiral 3N interaction as density-dependent two-body interaction

(2) construct effective density-dependent NN interaction

Basic idea: Sum one particle over occupied states in the Fermi sea

(3) combine with free-space NN interaction

combinatorial factor c depends on type of diagram!

Properties of the effective interaction $\overline{V}_{3\mathrm{N}}$

General momentum dependence:

 $\overline{V}_{3N} = \overline{V}_{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

- ${f P}$ -dependence much weaker than ${f k}, {f k}'$ -dependence!
- ullet neglect ${f P}$ -dependence, set ${f P}=0$
- matrix elements have the same form like free-space
 NN interaction matrix elements

straightforward to include in existing many-body schemes

$$E_{full}^{(1)} = \underbrace{ \begin{array}{c} & + & \underbrace{V_{NN}} \\ & + & \underbrace{V_{3N}} \end{array} }_{eff} + \underbrace{V_{3N}} \end{array}$$

Properties of the effective interaction \overline{V}_{3N} $(\Lambda_{3N} = 2.0 \,\mathrm{fm}^{-1})$

Equation of state: Many-body perturbation theory

central quantity of interest: energy per particle E/N $H(\lambda) = T + V_{NN}(\lambda) + V_{3N}(\lambda) + ...$

- "hard" interactions require non-perturbative summation of diagrams
- with low-momentum interactions much more perturbative
- inclusion of 3N interaction contributions

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Neutron matter: Symmetry energy

$$E(\rho, \alpha = 1) = -a_V + \frac{K_0}{18\rho_0^2}(\rho - \rho_0)^2 + S_2(\rho)$$
$$S_2(\rho) = a_4 + \frac{p_0}{\rho_0^2}(\rho - \rho_0)$$

$c_1 \; [\text{GeV}]$	$c_3 \; [\text{GeV}]$	$a_4 [MeV]$	$p_0 [\mathrm{MeV fm^{-3}}]$
-0.81	-3.2	31.7	2.4/2.5
-0.81	-5.7	33.7	2.9/3.0
-0.7	-3.2	31.7	2.4/2.5
-1.4	-5.7	34.5	3.3/3.4

- uncertainties in c_i couplings lead to uncertainties in symmetry energy
- given the experimental constraint $a_4 = 30 \pm 4 \,\mathrm{MeV}$ smaller absolute values of c_3 seem to be preferred from our results

Equation of state of symmetric nuclear matter

"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required." Hans Bethe (1971)

• empirical saturation at $n_S \sim 0.16 \,\mathrm{fm}^{-3}$ and $E_{\mathrm{binding}}/N \sim -16 \,\mathrm{MeV}$

Equation of state of symmetric nuclear matter

- empirical saturation at $n_S \sim 0.16 \,\mathrm{fm}^{-3}$ and $E_{\mathrm{binding}}/N \sim -16 \,\mathrm{MeV}$
- nuclear saturation delicate due to cancellations of large kinetic and potential energy contributions
- 3N forces are essential! Here: fit 3NF couplings to few-body systems:

 $E_{^{3}\text{H}} = -8.482 \,\text{MeV}$ and $r_{^{4}\text{He}} = 1.95 - 1.96 \,\text{fm}$

Equation of state of symmetric nuclear matter

- saturation point consistent with experiment, without new free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Bulk nuclear properties efficiently described at low resolution!

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Constraints on the nuclear equation of state (EOS)

nature

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Credit: NASA/Dana Berry

Stru Tolm

 $\frac{dP}{dr}$

С

eutron star is determined by eimer-Volkov (TOV) equation:

$$\frac{P}{\epsilon c^2} \left[1 + \frac{4\pi r^3 P}{Mc^2} \right] \left[1 - \frac{2GM}{c^2 r} \right]^{-1}$$

dient: energy density $\epsilon = \epsilon(P)$

Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~I.4 M_{\odot}) theoretically not well constrained.

But: Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter \longrightarrow neutron star matter parametrize piecewise 37 crust EOS Γ_{2} high-density extensions of EOS: neutron star matter 36 with c_i uncertainties $\log_{10} P [dyne/cm^2]$ 35 • use polytropic ansatz Γ_1 $p \sim \rho^{\Gamma}$ 34 33 range of parameters 32 $\Gamma_1, \rho_{12}, \Gamma_2$ limited by physics! 31 13.0 13.5 14.0 $\boldsymbol{\rho}_1$ ρ_{12} $\log_{10}\rho \ [g/cm^3]$ KH et al., PRL 05, 161102 (2010)

Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~1.4 M_{\odot}) theoretically not well constrained.

But: Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter \longrightarrow neutron star matter 37 crust EOS Γ_2 NN only, EM 2.5 neutron star matter NN only, EGM 36 with c_i uncertainties $\log_{10} P [dyne/cm^2]$ 2.0 $[10^{33} dyne/cm^2]$ 35 Γ_1 1.5 34 33 1.0 32 0.5 31 0 0.2 0.8 0.4 0.6 1.0 0 13.0 13.5 14.0 ρ_1 ρ_{12} $\rho [\rho_0]$ $\log_{10}\rho$ [g/cm³] KH et al., PRL 05, 161102 (2010)

without 3N forces EOS differs significantly from crust EOS around $ho_0/2$

- low-density part of EOS sets scale for allowed high-density extensions
- \bullet radius constraint after incorporating crust corrections: $10.5-13.5\,km$

Constraints on neutron star equations of state

• $1.97 M_{\odot}$ neutron star and causality constrain nuclear equation of state at high densities (esp. lower bound)

• very stiff EOS lead to low central densities in typical ns ($ho \sim (2-2.5)
ho_0$)

Cooling of neutron stars

- neutron star transparent to neutrinos \longrightarrow neutrino emission dominates cooling process for about 10⁵ years after formation
- Cooper pair formation dominant cooling process in young neutron stars, superfluidity allows process $n + n \rightarrow [nn] + \nu + \overline{\nu}$

Superfluidity in neutron and cooling of neutron stars

- pairing gap rather well constrained
- active at low densities
- 3N force contributions moderate
- only weakly affects cooling (crustal cooling)

 $T_C\, extracted$ in Page et al., PRL 106, 081101 (2011)

- only loosely constrained so far
- active at higher densities
- 3N force contributions important
- crucial for cooling
- (core cooling)

Conclusions

derivation of density-dependent effective NN interactions from 3N interactions

- effective NN interaction efficient to use and accounts for 3N effects in neutron and nuclear matter to good approximation
- good agreement with empirical symmetry energy and nuclear saturation properties
- constraints for the neuton star equation of state and radii of neutron stars
- first investigation of triplet pairing in neutron stars including 3N forces

In collaboration with:

