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Chiral three-nucleon forces: 
From neutron matter to neutron stars

Fermions from Cold Atoms to Neutron Stars:
Benchmarking the Many-Body Problem



The nuclear landscape

• Nuclear systems are complex many-
body systems with rich properties 

• No “one size fits all” method

• All theoretical approaches need to be 
linked

Nucleonic matter: 
Infinite system of interacting neutrons 
and protons in the thermodynamic limit.

Introduction Formalism Results scale Summary

Which theoretical method(s)?

! No “one size fits all” theory for nuclei

! All theoretical approaches need to be linked

Non-Empirical Pairing Functional for nuclei T. Duguet



Significance of nuclear/neutron matter results

• for the extremes of astrophysics: 

neutron stars, supernovae, 

neutrino interactions with nuclear matter

• constraining microscopically energy-density functionals, next-generation 

Skyrme functionals, density matrix expansion

• universal properties at low densities, can be probed in experiments with 

ultracold Fermi gases

• my focus: development of efficient methods to include 3N forces in 

microscopic many-body calculations of neutron/nuclear matter and finite nuclei

UNEDF 

X-ray burst Crab pulsar

SN1987a

Nova



Wavelength and resolution

Question:  Which resolution should we choose?

 size of resolvable structures depends on the wavelength

Depends on the system and phenomena we are interested in! 



Resolution: The higher the better?

• resolution of very small (irrelevant) structures can obscure this information

• small details have nothing to do with long-wavelength information!

in the nuclear physics here we are interested in low-energy observables

(long-wavelength information!)



Strategy: Use a low-resolution version

• long-wavelength information is preserved

• distortion at small distance significantly reduced

• much less information necessary

In nuclear physics: 
Use renormalization group (RG) to change resolution! 



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit scattering data (long-wavelength information!)

• “hard” NN interactions contain repulsive core at small relative distance

• strong coupling between low and high-momentum components, hard to solve!

Problem: Traditional “hard” NN interactions

Claim: 
Problems due to high resolution from interaction.

These interactions correspond to using beer coasters.

〈k′|V |k〉

V3N

k −k

k′ −k′

V
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Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
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Hλ = UλHU†
λ λ

dHλ

dλ
= [ηλ, Hλ]

Changing the resolution: 
The (Similarity) Renormalization Group

• goal: generate unitary transformation of “hard” Hamiltonian

• basic idea: change resolution in small steps:

with the resolution parameter 

• SRG only one possibility, also: Vlow k, UCOM, Lee-Suzuki...



Changing the resolution: 
The (Similarity) Renormalization Group

• elimination of coupling between low- and high momentum components,
calculations much easier!

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformation also changes three-body (and higher-body) interactions!



Why are there 3N forces?

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,
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dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Classical analog
Tidal effects lead to 3N forces in earth-sun-moon system:

• force between earth and moon depends on the position of sun

• tidal deformations are internal excitations

• nucleons are composite particles, can also be excited

• change of resolution changes the excitations that can be 

described explicitly           change of 3N force

• three-nucleon forces are crucial at low resolutions!



• choose effective degrees of 
freedom: here nucleons and pions

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV 

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

Basics concepts of chiral effective field theory
                    NN       3N           4N

Plan: Use EFT interactions 
as input to RG evolution.



• cD and cE have to be determined 
in A   3 systems 

• large uncertainties in 2   coupling 
constants at present:

π

             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

1.5

Leading order chiral 3N forces

leads to theoretical uncertainties in
many-body observables 

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

∆

≥



Chiral 3N interaction as density-dependent two-body interaction

π π π ππ ππ ππ ππ π= - - - + +

V NNV = + 1/ccombinatorial factor c depends 
on type of diagram!

(1) calculate antisymmetrized 3N interaction

(2) construct effective density-dependent NN interaction

(3) combine with free-space NN interaction

V3N

k3σ3V3NV3N

V3N

Basic idea: 
Sum one particle over occupied 
states in the Fermi sea



General momentum dependence:
V 3N = V 3N(k,k′,P)

V3N

P/2 + k P/2− k

P/2 + k′ P/2− k′

•    -dependence much weaker than         -dependence!P k,k′

• neglect    -dependence, set 

• matrix elements have the same form like free-space 
NN interaction matrix elements 

• straightforward to include in existing many-body schemes

P P = 0

Properties of the effective interaction  V 3N
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(Λ3N = 2.0 fm−1)
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VNN V3N

V3N

V3N

Equation of state: Many-body perturbation theory

E =

+ +

+ +

central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-momentum interactions much more perturbative

• inclusion of 3N interaction contributions

+ . . .

Hartree-Fock

VNN

VNN

++ +
V3N

V3N

V3N

VNN

VNN

V3N

2nd-order

Hartree-Fock

kinetic energy

3rd-order 
and beyond

H(λ) = T + VNN(λ) + V3N(λ) + ...



• significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• energy sensitive to uncertainties in 3N interaction

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

ENN+3N,eff
(1) ENN+3N,eff

2.0 < 3N < 2.5 fm-1
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• good agreement with other approaches (different NN interactions)

Hartree-Fock 2nd-order



Neutron matter:
Symmetry energy

S2(ρ) = a4 +
p0

ρ2
0

(ρ− ρ0)

E(ρ, α = 1) = −aV +
K0

18ρ2
0

(ρ− ρ0)2 + S2(ρ)

• given the experimental constraint a4 = 30± 4 MeV
smaller absolute values of      seem to be preferred from our resultsc3

c1 [GeV] c3 [GeV] a4 [MeV] p0 [MeV fm−3]
−0.81 −3.2 31.7 2.4/2.5
−0.81 −5.7 33.7 2.9/3.0
−0.7 −3.2 31.7 2.4/2.5
−1.4 −5.7 34.5 3.3/3.4

• uncertainties in     couplings lead to uncertainties in symmetry energyci



Equation of state of symmetric nuclear matter

nS ∼ 0.16 fm−3

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• empirical saturation at                         and                        Ebinding/N ∼ −16 MeV

“Very soft potentials must 
be excluded because they 
do not give saturation; 
they give too much binding 
and too high density. In 
particular, a substantial 
tensor force is required.”
Hans Bethe (1971)
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l̄S

• nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions

• 3N forces are essential! Here: fit 3NF couplings to few-body systems: 

KH et al., PRC(R) 83, 031301 (2011)

E3H = −8.482 MeV r4He = 1.95− 1.96 fmand

nS ∼ 0.16 fm−3

Overview RG Summary Extras Physics Resolution Forces Filter Coupling
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l̄S

• empirical saturation at                         and                        Ebinding/N ∼ −16 MeV



• saturation point consistent with experiment, without new free parameters

• cutoff dependence at 2nd order significantly reduced

• 3rd order contributions small

• cutoff dependence consistent with expected size of 4N force contributions

ENN+3N,eff
(1) ENN+3N,eff

(2) ENN+3N,eff
(3,pp/hh)
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Bulk nuclear properties 
efficiently described at low resolution! 



Hierarchy of many-body contributions 

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
Ekinetic  + ENN

0.05 0.1 0.15 0.2 0.25 0.3
! [fm-3]

-60

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
E3N + 3N-NN
Etotal

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
Ekinetic  + ENN

0 0.05 0.1 0.15
! [fm-3]

-40

-20

0

20

40

En
er

gy
/n

uc
le

on
 [M

eV
]

Ekinetic
ENN
E3N + 3N-NN
Etotal

• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter



Constraints on the nuclear equation of state (EOS)

Structure of a neutron star is determined by 
Tolman-Oppenheimer-Volkov (TOV) equation:

dP

dr
= −GMε

r2

[
1 +

P

εc2

] [
1 +

4πr3P

Mc2

] [
1− 2GM

c2r

]−1

crucial ingredient: energy density ε = ε(P )

LETTER
doi:10.1038/nature09466

A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chainMonte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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no evidence for any kind of pulse intensity
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In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
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0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
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the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Demorest et al., Nature 467, 1081 (2010)

Credit: NASA/Dana Berry

Mmax = 1.65M! → 1.97± 0.04 M!



Neutron star radius constraints

Problem: Solution of  TOV equation requires EOS up to very high densities. 
Radius of a typical NS (M~1.4 M  ) theoretically not well constrained. 

But: Radius of NS is relatively insensitive to high density region. 
!

KH et al., PRL 05, 161102 (2010)
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• radius constraint after incorporating crust corrections:

Neutron star radius 
constraints

• low-density part of EOS sets scale for allowed high-density extensions 

use the constraints:

vs(ρ) =
√

dP/dε < c

10.5− 13.5 km

Mmax > 1.97 M!

KH et al., PRL 05, 161102 (2010)
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Constraints on neutron star equations of state

KH et al., PRL 05, 161102 (2010)

•              neutron star and causality constrain nuclear equation of state 
at high densities (esp. lower bound)

• very stiff EOS lead to low central densities in typical ns (                       )

1.97M!

14.2 14.4 14.6 14.8 15.0 15.2
log 10  [g / cm3]

 33

 34

 35

 36

lo
g 1

0
P 

[d
yn

e/
cm

2 ]

WFF1      
WFF2      
WFF3      
AP4       
AP3       
MS1       
MS3       
GM3       
ENG       

14.2 14.4 14.6 14.8 15.0 15.2

 33

 34

 35

 36

PAL       
GS1       
GS2       
PCL2      
SQM1      
SQM2      
SQM3      
PS        

ρ ∼ (2− 2.5)ρ0



Cooling of neutron stars

• neutron star transparent to neutrinos           neutrino emission dominates 

cooling process for about 105 years after formation

• Cooper pair formation dominant cooling process in young neutron stars,

   superfluidity allows process                       

Te ’ Te0ðT=108 KÞ!K; (7)

where Te0 # 106 K and !# 0:5. The evolution of Te is
hence similar to that of T, and the internal cooling curves
of Fig. 2 map onto analogous models of Figs. 1, 3, and 4.
The scale Te0 and the exponent! in Eq. (7) both depend on
the chemical composition of the envelope. The presence of
light elements, e.g., H, He, C, and/or O, increases Te0 and
reduces! compared to the case of heavy elements, e.g., Fe,
depending on the total mass !Mlight of light elements [22].

Using Eq. (7), the slope s ¼ dlog10Te=dlog10t of the
transit cooling curve from Eq. (4) is

s ¼ !
dlog10T

dlog10t
¼ %!

6

ft=tC
1þ fðt% tCÞ=tC

; (8)

whereas the slopes of the asymptotic trajectories, Eqs. (2)
and (6), are both s ¼ %!=6#%1=12. As long as t is only
slightly larger than tC, the transit slope is larger than those
of the asymptotic trajectories by a factor#f. The observed
slope over a 10 yr interval is sobs ’ %1:4. Note, however,
that the model ‘‘0.5’’ of Fig. 1 does not exhibit such a large
slope. We are thus led to investigate the origin of the
rapidity of Cas A’s cooling.

Several factors influence the rapidity of the transit phase.
First, LPBF depends on the shape of the Tcnð"Þ curve. A
weak " dependence, i.e., a wide Tcnð"Þ curve, results in a
thicker PBF neutrino emitting shell and a larger LPBF than a
strong " dependence. Second, the T dependence of Te, i.e.,
the parameter ! in Eq. (7), also affects the slope in Eq. (8).
Third, protons in the core will likely exhibit superconduc-
tivity in the 1S0 channel. Most calculations of the proton
critical temperature, Tcpð"Þ, are larger than Tcnð"Þ at low

densities. Proton superconductivity suppresses the MU
process in a large volume of the core at a very early age,
reducing LMU [23]. In our analytical model, this reduction
translates to a lower L9 and, hence, to a larger f. The
analytical model as well as our calculations reveal that
proton superconductivity significantly accelerates cooling
during transit and results in a large slope. This feature,
essential to account for Cas A’s cooling rate, is illustrated
in the right panel of Fig. 2.
By varying the relevant physical ingredients, such as the

density range of proton 1S0 superconductivity, the shape of
the Tcnð"Þ curve, the chemical composition of the enve-
lope, and the star’s mass, many models can reproduce the
average observed Te of Cas A. These models yield slopes
ranging from #% 0:1 (no rapid cooling and no constraint
on TC) up to %2. A typical good fit to the rapid cooling
of Cas A is shown in Fig. 3, where the large slope results
from the strong suppression of LMU by extensive proton
superconductivity. Figure 4 demonstrates that the result
TC ’ 0:5' 109 K does not depend on the star’s mass,
but that the slope during the transit is very sensitive to
the extent of proton superconductivity. Models successful
in reproducing the observed slope require superconducting
protons in the entire core. Although spectral fits [5] seem
to indicate that Cas A has a larger than canonical mass
(1:4M(), a recent analysis [6] indicates compatibility, to
within 3#, with a smaller mass, 1:25M(. The need for
extensive proton superconductivity to reproduce the large
observed slope favors moderate masses unless supercon-
ductivity extends to much higher densities than current
models predict (see, e.g., Fig 9 in [14] for a large sample
of current models).
The inferred TC ’ 0:5' 109 K, either from Figs. 1, 3,

and 4 or from Eq. (3), appears quite robust and stems from
the small exponent in the relation TC / ðC9L

%1
9 t%1

C Þ1=6.
Assuming L9 is not very strongly affected by protonCT  = 10  K

T  = 0CCT  = 5.5x10  K8

9

FIG. 3. A typical good fit to Cas A’s rapid cooling for a 1:4M(
star, built from the EOS of APR [25] with an envelope mass
!Mlight ¼ 5' 10%13M(. The two dotted curves, with indicated

values of TC, are to guide the eye. The three models have a
proton 1S0 gap from [26] (the model ‘‘CCDK’’ in [14]) which
results in the entire core being superconducting. The insert
shows a comparison of our results with the five data points of
[7] along with their 1# errors.

0.51
0.52
0.57

1.9
1.6
1.3

M/M T  [10  K]C
9

FIG. 4. Cooling curves with different masses and values of
TC as indicated. For the 1:9M( star, !Mlight ¼ 5' 10%11M(.
For the other two masses shown, !Mlight ¼ 5' 10%13M(. The
assumed proton 1S0 gap is the same as in Fig. 3. The slopes, at
the current age of Cas A, are %1:4, %0:9, and %0:5 for the 1.3,
1.6, and 1:9M( models, respectively: the decrease, with increas-
ing mass, directly reflects the decrease of the core’s fractional
volumes in which protons are superconducting.
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We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino

emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel.

We find that the critical temperature for this superfluid transition is ’ 0:5! 109 K. The observed rapidity

of the cooling implies that protons were already in a superconducting state with a larger critical

temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear

densities within neutron stars. Our prediction that this cooling will continue for several decades at the

present rate can be tested by continuous monitoring of this neutron star.
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The neutron star in Cassiopeia A (Cas A), discovered in
1999 in the Chandra first light observation [1] targeting the
supernova remnant, is the youngest known in the Milky
Way. An association with the historical supernova SN 1680
[2] gives Cas A an age of 330 yr, in agreement with its
kinematic age [3]. The distance to the remnant is estimated
to be 3:4þ0:3

"0:1 kpc [4]. The thermal soft x-ray spectrum of
Cas A is well fit by a nonmagnetized carbon atmosphere
model, with a surface temperature of 2! 106 K and
an emitting radius of 8–17 km [5]. These results raise
Cas A to the rank of the very few isolated neutron stars
with a well determined age and a reliable surface tempera-
ture, thus allowing for detailed modeling of its thermal
evolution and the determination of its interior proper-
ties [6].

Analyzing archival data from 2000–2009, Heinke and
Ho [7] recently reported that Cas A’s surface temperature
has rapidly decreased from 2:12! 106 to 2:04! 106 K
[8,9]. This rate of cooling is significantly larger than ex-
pected from the modified Urca (‘‘MU’’) process [10,11] or
a medium modified Urca [12]. It is also unlikely to be due
to any of the fast neutrino (!) emission processes (such as
direct Urca processes from nucleons or hyperons, or !
emission from Bose condensates or gapless quark matter)
since the visible effects of those become apparent over
the thermal relaxation time scale of the crust [13]; i.e.,
30–100 yr, much earlier than the age of Cas A, and exhibit
a slow evolution at later times. We interpret Cas A’s
cooling within the ‘‘minimal cooling’’ paradigm [14] and
suggest it is due to the recent triggering of enhanced
neutrino emission resulting from the neutron 3P2 pairing
in the star’s core. Our numerical calculations and analytical
analysis imply a critical temperature TC ’ 0:5! 109 K for
the triplet neutron superfluidity.

The essence of the minimal cooling paradigm is the
a priori exclusion of all fast !-emission mechanisms,
thus restricting ! emission to the ‘‘standard’’ MU process
and nucleon bremsstrahlung processes [11]. However, ef-
fects of pairing, i.e., neutron superfluidity and/or proton
superconductivity, are included. At temperatures just be-
low the critical temperature Tc of a pairing phase transi-
tion, the continuous breaking and formation of Cooper
pairs [15], referred to as the ‘‘PBF’’ process, results in
an enhanced neutrino emission. Calculations of Tc for
neutrons, Tcn, in the 3P2 channel relevant for neutron star
cores, are uncertain due to unsettled interactions [16] and
medium effects which can either strongly suppress or
increase the pairing [17]. Consequently, predictions range
from vanishingly small to almost 1011 K [14]. The pairing
gap is density (") dependent, and the resulting Tcnð"Þ
commonly exhibits a bell-shaped density profile.
Assuming the neutron star has an isothermal core at tem-
perature T, the phase transition will start when T reaches,
at some location in the star, the maximum value of Tcnð"Þ:
TC & maxTcnð"Þ. At that stage, neutrons in a thick shell go
through the phase transition and as T decreases, this shell
splits into two shells which slowly drift toward the lower
and higher density regions away from the maximum of the
bell-shaped profile. If the neutron 3P2 gap has the appro-
priate size, ! emission from the PBF process is an order of
magnitude more efficient than the MU process (see Fig. 20
of [14] or Fig. 2 of [18]).
Implications of the size of the neutron 3P2 pairing

gap were considered in [19] with the result that, for
TC < 109 K, a neutron star would go through the pairing
phase transition at ages ranging from hundreds to tens
of thousands of years, accompanied by a short phase of
rapid cooling. This phenomenon, illustrated in Fig. 6 of
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ENLARGE IMAGE

Cool. The neutron star Cassiopeia A is
cooling at an alarming rate, and the
only way that can happen is if the
matter in it is turning into a "superfluid,"
two teams report.

Credit: X-ray: NASA/CXC/xx; Optical:
NASA/STScI; Illustration:
NASA/CXC/M.Weiss

For more than 50 years, astrophysicists have speculated that inside a

superdense neutron star, nuclear matter might flow without any

resistance whatsoever—much like electricity does in earthy materials

known as superconductors. Now, two teams say they have direct

evidence of such bizarre "superfluidity" in a neutron star, and other

researchers seem convinced. "I think it's a defensible claim," says

theorist Krishna Rajagopal of the Massachusetts Institute of Technology

in Cambridge. "The only explanation [of the observation] that I'm aware

of is the one presented in papers."

Ordinary superconductivity is weird to begin with. When some metals are

cooled nearly to absolute zero, the electrons in them form hard-to-break

"Cooper pairs" that flow without resistance. In 1959, just 2 years after

physicists worked out that explanation for superconductivity, some of

them proposed that similar pairing may happen inside incredibly hot,

hugely pressurized neutron stars. The core of a massive star that has

died in a supernova explosion, a neutron star consists of neutrons seasoned with a few protons and electrons,

and it packs as much mass as one or two suns into a globe less than 20 kilometers across.

Scientists have accumulated indirect evidence for such pairing and superfluidity. For example, spinning neutron

stars called pulsars emit clocklike streams of electromagnetic pulses. Usually incredibly steady, that pulsing

sometimes speeds up abruptly. Such "pulsar glitches" likely result from brief interactions between the neutron

star's solid crust and superfluid interior.

Now, two teams of physicists say they have more direct evidence for superfluidity in the heart of a neutron star.

The data come from NASA's orbiting Chandra X-ray Observatory, which between 2000 and 2009 took occasional

observations of Cassiopeia A (Cas A), a neutron star 11,000 light-years from Earth. The youngest known neutron

star in the Milky Way, Cas A was born in a supernova explosion that astronomers may have spotted 330 years

ago. The observations show that its temperature is falling at an alarming rate: from 2.12 million K to 2.04 million

K, or 4%, in 10 years.

That huge cooling rate shows that Cooper pairs are forming, says Dany Page, a theoretical astrophysicist at the

National Autonomous University of Mexico in Mexico City. In 2009, Page and colleagues predicted that a neutron

star, which cools by emitting particles called neutrinos, should undergo a sudden increase in cooling when

neutrons start to pair. That's because when two neutrons form a pair, they release energy that can go into

producing more neutrinos. The researchers had hoped to demonstrate that brief period of intense cooling by

measuring the temperatures of many neutron stars of different ages.

Then they got lucky. Last year, Wynn Ho of the University of Southampton in the United Kingdom and Craig

Heinke of the University of Alberta in Edmonton, Canada, found that Chandra data showed Cas A was cooling so

fast that they could measure the change. So instead of looking at many neutron stars, researchers needed to look

at only this one. "This is definitely the first time that we've been able to see an appreciable temperature change in

a neutron star," says Andrew Steiner, a nuclear astrophysicist at Michigan State University in East Lansing and

member of Page's team.

The researchers find that they can explain Cas A's massive cooling rate if the neutrons in the star (and,

separately, a few protons) are pairing, as they report this week in Physical Review Letters. The fierce cooling

must be a recent spurt, Page says, because otherwise the star would have to have started out "unbelievably hot."

Likewise, it can't go on forever because Cas A would get far colder than neutron stars generally do. Ho, Heinke,
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extraction of approximate pairing gap size 

Spectacular 4% temperature drop in young neutron star within only 10 years!

n + n→ [nn] + ν + ν̄



Superfluidity in neutron and cooling of neutron stars
spin-singlet (1S0): spin-triplet (3P2-3F2):

• pairing gap rather well constrained 

• active at low densities 

• 3N force contributions moderate

• only weakly affects cooling 

(crustal cooling)

• only loosely constrained so far

• active at higher densities

• 3N force contributions important

• crucial for cooling 

(core cooling)
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Conclusions

• derivation of density-dependent effective NN interactions from 3N 
interactions

• effective NN interaction efficient to use and accounts for 3N effects in 
neutron and nuclear matter to good approximation

• good agreement with empirical symmetry energy and nuclear saturation 
properties
 
• constraints for the neuton star equation of state and radii of neutron stars

• first investigation of triplet pairing in neutron stars including 3N forces 
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