Effects of interactions on Bose-Einstein condensation

Zoran Hadzibabic University of Cambridge

Experiment

Rob Smith Naaman Tammuz Robbie Campbell Scott Beattie Stuart Moulder

Theory w/

Jean Dalibard Markus Holzmann Nigel Cooper

INT Seattle, May 19 2011

Basic (Einstein's) picture of BEC

3D, ideal gas, constant T, vary N:

Dependence on interactions and temperature

- 122nK, 40a₀ •
- 126nK, 62a₀ •
- 115nK, 135a₀ •
- 121nK, 221a₀ •
- 157nK, 93a₀
- 152nK, 135a₀ •
- 184nK, 62a₀ •
- 181nK, 93a₀ •
- 177nK, 135a₀ •
- 171nK, 221a
- 188nK, 135a
- 186nK, 184a₀ •
- 181nK, 274a₀ •
- 233nK, 135a
- 260nK, 135a
- 251nK, 221a
- 267nK, 274a₀ •
- 284nK, 356a

Simplest theory

Hartree-Fock, thermal atoms interact only w/ the denser BEC, feel a Mexican hat potential

sl

$$\frac{N'}{N_c} \approx 1 + 1.37 \, \frac{\mu_0}{k_B T}$$

Following Stringari et al. cca 1996

$$\mu_0 \propto (N_0 a)^{2/5}$$

Non-saturation
$$S_{\rm HF} = \frac{dN'}{dN_0^{2/5}} = 1.37 \, X \qquad X = \xi a^{2/5} T^2$$
 slope:

Comparison with experiments

Saturation in the non-interacting limit

Critical point of a dilute Bose gas

Discussed since Lee & Yang 1957...

• Ideal gas:
$$n\lambda_0^3 = \zeta(3/2) pprox 2.612$$

• Uniform system:

beyond-MF effect!

Stoof et al., Baym et al., Prokof' ev & Svistunov, Arnold & Moore...

• Harmonic trap:

Stringari et al.

Two competing effects in a trapped gas

at the critical point...

MF <u>exact</u> to 1st order

Previous T_c measurements

What we do differently

1. Zoom-in on the critical point (precision)

interactions off during TOF, detect very small condensates

 $N_0/N \approx 0.14\%$

2. Differential measurements (accuracy)

Usually: <u>measure</u> $T_c(N, \omega, a)$ <u>calculate</u> $T_c(N, \omega, a = 0)$

Our work: <u>measure both</u> $T_c(N, \omega, a)$ and $T_c(N, \omega, \text{small } a)$ (need thermal equilibrium)

(Differential) critical point

Beyond-MF T_c shift

$$\frac{\Delta T_c}{T_c^0} = -3.426 \frac{a}{\lambda_0} \qquad \qquad \frac{\Delta T_c}{T_c^0} = -3.5(3) \frac{a}{\lambda_0} + 46(5) \left(\frac{a}{\lambda_0}\right)^2$$

small print: neglect logarithmic corrections

(Non-)Equilibrium?

What does it take?

$$\gamma_{\rm el} \tau > 3$$
 5 $t_{\rm hold} > \tau > 1/\omega$

Not the whole story if we have constant dissipation... relevant τ depends on the measurement precision

$$0.01 N_c \rightarrow \tau = 0.01/\gamma_{\rm loss}$$

Two kinds of non-equilibrium:

- 1. "transient" could reach equilibrium, but t_{hold} too short
- 2. "intrinsic" thermalization slower than dissipation:

$$t_{\rm hold} > \tau > 1/\omega \checkmark \gamma_{\rm el} t_{\rm hold} > 5 \checkmark$$

but $\gamma_{\rm el} \tau < 5 \checkmark$

Non-equilibrium effects

Uniform vs. harmonic (again) (subtract the trivial MF part)

Uniform system:

Harmonic trap:

T_c shift in the harmonic trap dominated by the density shift <u>outside</u> the critical region

Condensed fraction induced by critical correlations

$$N = N_c < N_c^{\rm MF} \qquad N = N_c^{\rm MF} > N_c$$

$$N_c^{\rm MF} \land \Delta n_c \propto a/\lambda_0$$

$$(\land A \wedge a) \land A \wedge a)$$

$$N_c^{\rm MF} - N_c \propto (a/\lambda_0)^2$$

iff
$$n_c^{\rm MF} - n_c \propto a/\lambda_0$$
,
 $f_0 = N_0/N \propto (a/\lambda_0)^4$

Baym & Holzmann Prokof' ev & Svistunov

Preliminary data...

$$(N_0/N)^{1/4} \approx 10 \, a/\lambda_0$$

<u>Can</u> be compared with uniform system MC + LDA... (Prokof' ev & Svistunov)

Summary

Sneak preview - Superfluidity in ring geometry...

Laguerre-Gauss trapping beam w/ various L values

L = 1 @ NIST

q=10 vortex interferometrically detected

azimuthal vector potentials, superfluid density

N.R. Cooper & ZH, PRL 2010 S.T. John, ZH & N.R. Cooper, PRA 2011 THE END