Quantum Degenerate Mixtures of Lithium and Ytterbium

Subhadeep Gupta University of Washington, Seattle UW INT Workshop, 16th May 2011

Mixtures

Spin Mixtures

Distinguishability for technical (cooling) and scientific (strong interactions & polarized gases)

Elemental Mixtures

Large differences in mass, electronic structure.

Heteronuclear – dipolar molecules Species selective techniques

Isotopic mixtures

Further ease of cooling Different statistics (slightly) heteronuclear

Colds Atoms Menu

hydrogen	-		15	100	250	5	1983	5	055	10	11		1020	705	100			helium
1																		2
1.1																		Ho
																		пе
1.0079 lithium	hervillum												boron	carbon	nitrogen	oxyden	fluorine	4.0026
3	4												5	6	7	8	9	10
Li	Be												E	C		O	200	Ne
6.941	9.0122												10.811	12.011	14.007	15,999	18.998	20.180
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												Al	S	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 10	calcium 20		scandium	titanium	vanadium 22	chromium	manganese 95	iron 26	cobait 97	nickel 20	copper 20	zinc 20	gallium 24	germanium	arsenic 22	selenium 2.4	bromine 25	krypton 26
19	20		16. I	d. d. inigani n	8.9 B. #	24	1.0 III III	1011	- 41 - 486	2.0 B. B. E.	2. J 1910a		- 0 I - 4 ²⁰ h	- 02 4 ¹⁰ 0	- 35 m	049 47%	100 100	30
K	Ca		5C		V	Cr	Mm	Fe	GO	N	GU	<i>L</i> n	Ga	(je	AS	50	Ьľ	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58,933	58,693	63.546	65.39	69.723	72.61	74.922	78.96	79,904	83.80
rubidium	strontium		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhedium	palladium	silver	cadmium	indium	tin	antimony	tellurium	lodine	xenon
37	38		39	40	41	42	43	44	4.5	40	47	48	49	UC	I C	2.C	00	54
Rb	Sr		W	Æľ	Nb	Mo	C	KU	Rh	Pd	Aq	Cd		Sn	SO	le	2	Xe
85.468	87.62		88,906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	57 70	lutetium 74	hafnium	tantalum 70	tungsten	rhenium	osmium 70	iridium	platinum 70	gold 70	mercury	thallium 04	lead	bismuth	polonium o a	astatine	radon
55	90	57-70		12	6.1	14	G 1	10	11	01	19	00	01	02	0.0	04	GO E d	0.0
Cs	Ba	×	L.U	1	l a	W	Ke	()s		Pt	Au	Hg		Pb	51	PO	At	Kn
132.91	137.33		174.97	178,49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 07	radium oo	90 102	lawrencium	rutherfordium	dubnium 405	seaborgium	bohrium	hassium	meitnerium	ununnilium 440	unununium a a a	ununbium 440		ununquadium 4.4.4				
0/	00	89-102	105	104	CU1	100	107 108 B	100	109	110				114				
Fr	Ra	**	l. P	Rt	Db	Sg	Bh	Hs	Wt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

0	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
5	lå	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Пþ	Dy	HO	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteintum	fermium	mendelevium	nobellum
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac		Pa	U	Nр	Pu	Am	Cm	Bk	$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right)$	5	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[262]	[257]	[258]	[259]

Li and Yb have different electronic structure and very different mass

A little about ⁶Li

Ground State of ⁶Li

Magnetic Feshbach Resonance (MFR)

Established cooling methods:

Red laser cooling line at 671nm

Evaporative cooling to degeneracy 2-spin states at a convenient B in an optical trap

Sympathetic cooling by a boson (7Li, ²³Na, ⁸⁷Rb) in a magnetic trap

Molecular BEC/Fermi Superfluid/ Universal Physics/ BEC-BCS crossover near Feshbach Resonance at 834G.

A little about Yb

A little more about Yb

A little more about Yb

Many isotopes cooled to degeneracy (Kyoto) Atomic clock on ${}^{1}S_{0} \rightarrow {}^{3}P_{0}$ (NIST, others)

Heavy – useful for precision measurements eg. e-EDM search in ³P₂

Yb fermions in optical lattice Quantum simulation, quantum computation

<u>When mixed with alkali:</u> Good collisions only - spin-zero ground state Additional species selectivity with B field gradient

Possibility of paramagnetic polar molecules

The Li-Yb combination

Ground States: Collisionally stable mixture expected. However very small thermalization factor (~ 21 collisions per particle for thermalization).

Mass Ratio = 29, B-F and F-F combos available new collisional regime (> 13.6) new many-body regime (highly mismatched Cooper pairs?)

Tunable interactions Magnetic Feshbach resonances – available? Optical Feshbach resonances – usable?

Microscopic/Impurity probe of the ⁶Li superfluid

Other similar mixtures:

Rb+Yb (Dusseldorf, NIST), Li+Yb (Kyoto), Rb+Sr (Innsbruck)

The Li-Yb combination

A paramagnetic polar molecule with electronic degree of freedom

Dipolar physics

Quantum simulation of lattice spin models

Quantum computing

Sensitive test of fundamental symmetries (e-EDM)

Ground state molecule production by ultracold atom association in Jin/Ye group (KRb), Weidemuller (LiCs), DeMille (RbCs), Nagerl (Cs₂),..

Feshbach resonance in LiYb?

Only doublet-sigma ground state potential for alkali+spin-singlet collisions. No "usual" MFR.

> Weak MFRs may exist [Hutson and co-workers, PRL 105, 153201 (2010)]

MFR through coupling between singlet and triplet ground state potentials in alkali+alkali collisions

Ab-initio Li-Yb potentials from Zhang et al. JCP 133, 044306 (2010).

Optical Feshbach Resonance

Optically connect free particles with an excited molecular state. Initial proposal by Shlyapnikov and others [PRL 77, 2913 (1996)].

Co-trapping of Li and Yb

Dual Species Apparatus

Yb MOT and double MOT

Sequential Loading

The 2 MOTs are optimized at different parameters of magnetic field gradient and also exhibit inelastic interactions

Optical Dipole Trap

Shallow angle (20 degrees) crossed beam dipole trap 1064nm, up to 25 Watts

Optical Dipole Trap

Shallow angle (20 degrees) crossed beam dipole trap 1064nm, up to 25 Watts

Co-trapping of Lithium and Ytterbium

Ground State behavior of Li-Yb mixture

It's stable!

Extract $|a| = (13 \pm 3) a_0$ (~ 0.7nm, kind of small)

Sympathetic Cooling to below T_F

Ivanov et al, PRL 106, 153201 (2011)

Bose-Einstein condensation of ¹⁷⁴Yb in a 1.06µm trap

A straightforward method to create Yb BECs in 1064nm potential. Quasi-pure BECs with up to 50,000 atoms possible

Recent technical improvements: improved laser cooling, tighter optical confinement.

Simultaneous Quantum Degeneracy in alkali + spin-zero system

Recent similar results in Takahashi/Doyle collaboration

Implications for other Li-Yb combinations

Isotope	Natural Abune	dance Nu	Nuclear spin				
$^{168}\mathrm{Yb}$	0.0013		0		+ 6		
$^{170}\mathrm{Yb}$	0.0305		0				
$^{171}\mathrm{Yb}$	0.143		1/2	F			
$^{172}\mathrm{Yb}$	0.219		0				
$^{173}\mathrm{Yb}$	0.161	10.55nm	5/2	F			
$^{174}\mathrm{Yb}$	0.318	5.55nm	0				
¹⁷⁶ Yb	0.127		0		+ 7		

Should all be stable with near identical value of scat length ¹⁷³Yb + ⁶Li gives most promising degenerate Fermi-Fermi mixture.

Should all have near identical value of scat length, different from above.

Li MFR in the presence of Yb.

Collisions with distinguishable 3rd component (heavy, boson/fermion) Impurity/microscopic probe of ⁶Li superfluid

What Next?

Key step towards LiYb molecule

Key step towards Optical Feshbach Resonance

UW Ultracold Atoms Team

Grad Students: Will Dowd, Anders Hansen, Alan Jamison, Alex Khramov, Ben Plotkin-Swing Undergrad: Ben Schwyn Post-doc: Vlad Ivanov (now at UW Madison)

\$\$\$ - NSF, Sloan Foundation, UW RRF, NIST