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Experiments: Pseudogap

in high-Tc materials: Electronic spectral function is 
suppressed along the BZ face, but not along zone 
diagonal.

Key physics dependence on momentum around Fermi 
surface, Difference of spectral function around Fermi 
surface.

Doping dependence of region with quasiparticles

insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.
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ARPES: Shen et al., Science 307, 901 (2005)
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Figure 1 Symmetrized EDCs for underdoped samples along the Fermi surface. a, Tc = 90 K sample in the superconducting state at T = 40 K. b, Tc = 90 K sample in the
pseudogap phase at T = 140 K. The bottom EDC is at the node, whereas the top is at the antinode, as defined in e. c, Symmetrized EDCs for a very underdoped, Tc = 25 K,
sample (corresponding to kF points 4–15), measured at 55 K in the pseudogap state. For this sample, the spectral weight is much reduced relative to higher doping values.
We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the
pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in
the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the
pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in
the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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I. INTRODUCTION

The discovery of superconductivity at 30 K in the
LaBaCuO ceramics by Bednorz and Müller (1986)
opened the era of high-Tc superconductivity, changing
the history of a phenomenon that had before been con-
fined to very low temperatures [until 1986 the maximum
value of Tc was limited to the 23.2 K observed in Nb3Ge
(Gavaler, 1973; Testardi et al., 1974)]. This unexpected
result prompted intense activity in the field of ceramic
oxides and has led to the synthesis of compounds with
increasingly higher Tc , all characterized by a layered
crystal structure with one or more CuO2 planes per unit
cell, and a quasi-two-dimensional (2D) electronic struc-
ture. By 1987, a Tc of approximately 90 K (i.e., higher
than the boiling point of liquid nitrogen at 77 K) was
already observed in YBa2Cu3O7!" (Wu et al., 1987).
The record Tc of 133.5 K (at atmospheric pressure) was
later obtained in the trilayer system HgBa2Ca2Cu3O8"x
(Schilling et al., 1993).

One may wonder whether the impact of the discovery
by Bednorz and Müller (1986) would have been some-
what overlooked if MgB2 , with its recently ascertained
39 K Tc , had already been discovered [Nagamatsu et al.
(2001); for a review see Day (2001)]. However, indepen-
dent of the values of Tc the observation of superconduc-
tivity in the ceramic copper oxides was in itself an unex-
pected and surprising result. In fact, ceramic materials
are typically insulators, and this is also the case for the
undoped copper oxides. However, when doped the latter
can become poor metals in the normal state and high-
temperature superconductors upon reducing the tem-
perature (see in Fig. 1 the phenomenological phase dia-
gram of electron- and hole-doped high-temperature
superconductors, here represented by Nd2!xCexCuO4
and La2!xSrxCuO4 , respectively). In addition, the de-
tailed investigation of their phase diagram revealed that
the macroscopic properties of the copper oxides are pro-
foundly influenced by strong electron-electron correla-
tions (i.e., large Coulomb repulsion U). Naively, this is
not expected to favor the emergence of superconductiv-
ity, for which electrons must be bound together to form
Cooper pairs. Even though the approximate T2 depen-
dence of the resistivity observed in the overdoped me-
tallic regime was taken as evidence for Fermi-liquid be-
havior, the applicability of Fermi-liquid theory (which
describes electronic excitations in terms of an interacting

gas of renormalized quasiparticles; see Sec. II.C) to the
‘‘normal’’ metallic state of high-temperature supercon-
ductors is questionable, because many properties do not
follow canonical Fermi-liquid behavior (Orenstein and
Millis, 2000). This breakdown of Fermi-liquid theory
and of the single-particle picture becomes most dramatic
upon approaching the undoped line of the phase dia-
gram (x#0 in Fig. 1), where one finds the antiferromag-
netic Mott insulator (see Sec. III). On top of this com-
plexity, it has long been recognized that also the
interplay between electronic and lattice degrees of free-
dom as well as the tendencies towards phase separation
are strong in these componds (Sigmund and Müller,
1993; Müller, 2000).

The cuprate high-temperature superconductors have
attracted great interest not only for the obvious applica-
tion potential related to their high Tc , but also for their
scientific significance. This stems from the fact that they
highlight a major intellectual crisis in the quantum
theory of solids, which, in the form of one-electron band
theory, has been very successful in describing good met-
als (like Cu) but has proven inadequate for strongly cor-
related electron systems. In turn, the Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen et al., 1957; see also
Schrieffer, 1964), which was developed for Fermi-liquid-
like metals and has been so successful in describing con-
ventional superconductors, does not seem to have the
appropriate foundation for the description of high-Tc
superconductivity. In order to address the scope of the
current approach in the quantum theory of solids and
the validity of the proposed alternative models, a de-
tailed comparison with those experiments that probe the
electronic properties and the nature of the elementary
excitations is required.

In this context, angle-resolved photoemission spec-
troscopy (ARPES) plays a major role because it is the
most direct method of studying the electronic structure
of solids (see Sec. II). Its large impact on the develop-
ment of many-body theories stems from the fact that this
technique provides information on the single-particle
Green’s function, which can be calculated starting from a

FIG. 1. Phase diagram of n- and p-type superconductors,
showing superconductivity (SC), antiferromagnetic (AF),
pseudogap, and normal-metal regions.
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Pseudogap* appears only on the hole doped side.

Dopings smaller than optimal doping.
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(Bi2212, Y123, Tl2201 and Hg1201). The datapoints were obtained, as a function of hole doping x, by angle-resolved photoemission
spectroscopy (ARPES), tunneling (STM, SIN, SIS), Andreev reflection (AR), Raman scattering (RS) and heat conductivity (HC).
On the same plot we are also including the energy "r of the magnetic resonance mode measured by inelastic neutron scattering (INS),
which we identify with Esc because of the striking quantitative correspondence as a function of Tc. The data fall on two universal curves
given by Epg = Emax

pg (0.27 − x)/0.22 and Esc = Emax
sc [1 − 82.6(0.16 − x)2], with Emax

pg = Epg(x =0.05) = 152 ± 8 meV and
Emax

sc = Esc(x = 0.16) = 42 ± 2 meV (the statistical errors refer to the fit of the selected datapoints; however, the spread of all available
data would be more appropriately described by ±20 and ±10 meV, respectively).

show that one fundamental and robust conclusion can be
drawn: the HTSC phase diagram is dominated by two energy
scales, the superconducting transition temperature Tc and the
pseudogap crossover temperature T ∗, which converge to the
very same critical point at the end of the superconducting dome.
Establishing whether this phenomenology can be conclusively
described in terms of a coexisting two-gap scenario, and
what the precise nature of the gaps would be, will require a
more definite understanding of the quantities measured by the
various probes.

2. Emerging phenomenology

The literature on the HTSC superconducting gap and/or
pseudogap is very extensive and still growing. In this situation
it seems interesting to go over the largest number of data
obtained from as many experimental techniques as possible,
and look for any possible systematic behavior that could be
identified. This is the primary goal of this focused review. We
want to emphasize right from the start that we are not aiming
at providing exact quantitative estimates of superconducting
and pseudogap energy scales for any specific compound or
any given doping. Rather, we want to identify the general
phenomenological picture emerging from the whole body of
available experimental data [5, 9, 13, 16, 18, 34–72].

We consider some of the most direct probes of low-
energy, electronic excitations and spectral gaps, such as
angle-resolved photoemission (ARPES), scanning-tunneling
microscopy (STM), superconductor/insulator/normal-metal

(SIN) and superconductor/insulator/superconductor (SIS)
tunneling, Andreev reflection tunneling (AR) and Raman
scattering (RS), as well as less conventional probes such as
heat conductivity (HC) and inelastic neutron scattering (INS).
The emphasis in this review is on spectroscopic data because
of their more direct interpretative significance; however,
these will be checked against thermodynamic/transport data
whenever possible. With respect to the spectroscopic data, it is
important to differentiate between single-particle probes such
as ARPES and STM, which directly measure the one-electron
excitation energy ! with respect to the chemical potential (on
both side of EF in STM), and two-particle probes such as
Raman and inelastic neutron scattering, which instead provide
information on the particle-hole excitation energy 2!. Note
that the values reported here are those for the ‘full gap’ 2!
(associated with either Esc or Epg), while frequently only half
the gap ! is given for instance in the ARPES literature. In
doing so one implicitly assumes that the chemical potential lies
half-way between the lowest-energy single-electron removal
and addition states; this might not necessarily be correct but
appears to be supported by the direct comparison between
ARPES and STM/Raman results. A more detailed discussion
of the quantities measured by the different experiments and
their interpretation is provided in the following subsections.
Here we would like to point out that studies of B2g and
B1g Raman intensity [19, 40, 52], heat conductivity of nodal
quasiparticles [70,71] and neutron magnetic resonance energy
"r [42] do show remarkable agreement with superconducting
or pseudogap energy scales as inferred by single-particle

3
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Experiments: Overdoped Ti2201 / ADMR

Angle dependent magneto-resistance:

French, Analytis, Carrington, Balicas, Hussey: 
NJP 11, 05595 (2009)

4

Figure 1. For caption see the following page.

New Journal of Physics 11 (2009) 055057 (http://www.njp.org/)

Data analysis:
ρ(T ) = A + BT + CT 2

Angle dependent analysis:

γiso ∼ A + CT 2
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description of γaniso(T ) over the full temperature range studied, as indicated by the dashed lines
in the lower panel. This additional T 2 term in γaniso(T ) was not picked out in the original lower
temperature measurements [11] as its contribution to γaniso(T ) was too small to be significant.
The relative magnitudes of the two components of γaniso(T ) are plotted for Tl15K in the bottom
panel of figure 3 along with γiso(T ). There is roughly 60% anisotropy in the T 2 scattering
rate within the basal plane, comparable to the variation in the density of states [17]. While
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Figure 3. Temperature dependence of the isotropic (top panel) and anisotropic
(middle panel) scattering rates determined from the ADMR measurements
shown in figure 1. NP15K refers to the sample whose ADMR were measured at
a single azimuthal angle [11]. The dashed lines in the top and middle panels are
fits to A + CT 2 and A + BT + CT 2, respectively. The insets in each panel depict
the Fermi surface (as red solid lines) and the corresponding scattering rates (as
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lines and green short-dashed lines) and γiso(T ) (orange dots) for Tl15sK.

description of γaniso(T ) over the full temperature range studied, as indicated by the dashed lines
in the lower panel. This additional T 2 term in γaniso(T ) was not picked out in the original lower
temperature measurements [11] as its contribution to γaniso(T ) was too small to be significant.
The relative magnitudes of the two components of γaniso(T ) are plotted for Tl15K in the bottom
panel of figure 3 along with γiso(T ). There is roughly 60% anisotropy in the T 2 scattering
rate within the basal plane, comparable to the variation in the density of states [17]. While
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Anisotropic component of scattering rate: maximal 
near antinodal point, minimal near nodal point.

Momentum space differentiation!

T



Questions to theory

ʻExplainʼ momentum 
space differentiation

ʻExplainʼ pseudogap

ʻExplainʼ experimental probes: 
ARPES, ADMR, optical 
conductivities, Raman, NMR,…

…………we will try to give an answer in this talk………



Theory

Simulations of phase diagrams

Large enough systems to show which features are robust

Variation of cluster size, cluster geometry, etc to control approximation

Computation of experimental probes

Hubbard model, with tʼ-anisotropy, treated in a cluster DMFT approximation.

No long range order (AFM, stripes, …), no multi-orbital physics

Open theoretical question (addressed in this talk): how much of the physics already 
contained in this model?

H = −
�

�ij�,σ

tij(c†iσcjσ + c
†
jσciσ) + U

�

i

ni↑ni↓.



Cluster DMFT

Example: Tiling of 
the BZ:

Restriction to paramagnetic bath 
(no long-ranged AFM here)

DMFT: Metzner, Vollhardt, Phys. Rev. Lett. 62, 324 (1989),
Georges, Kotliar, Phys. Rev. B 45, 6479 (1992),
Jarrell, Phys. Rev. Lett. 69, 168 (1992),
Georges et al., Rev. Mod. Phys. 68, 13 (1996),

DCA: Hettler et al., Phys. Rev. B 58, R 7475 (1998),
Lichtenstein, Katsnelson, Phys. Rev. B 62, R9283 (2000)
CDMFT: Kotliar et al., Phys. Rev. Lett. 87, 186401 (2001)
T. Maier, et al., Rev. Mod. Phys. 77, 1027 (2005).

�p = −2t(cos(px) + cos(py))− 4t� cos(px) cos(py)

Basis functions

Systematic truncation 
with cluster sites Nc

ʻMachineryʼ for obtaining approximated 
self energy: Cluster scheme. We use the 
DCA: ϕ constant on patches in the BZ

Σ(k, ω) =
�

n

Σn(ω)φn(k) ≈
Nc�

n

Σn(ω)φn(k)

Approximation to self energy:

Cluster DMFT is a controlled 
approximation, exact for Nc → ∞

(0, 0)

(π, π)

DMFT for Nc =1

Phys. Rev. Lett. 106, 030401 (2011)

http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401


Σ(k, ω) =
�

n

Σn(ω)φn(k) ≈
Nc�

n

Σn(ω)φn(k)

Algorithm that produces             : Mapping onto a quantum impurity problem & self-
consistent hybridization with a “bath”.

Σn(ω)

Review: E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. 
Troyer, P. Werner, arXiv:1012.4474 (Rev. Mod. Phys., in press) 

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)

HQI = Hloc + Hhyb + Hbath

Hloc =
�

i �i(ni↑ + ni↓) + Uni↑ni↓

Hbath =
�

kα �kαc
†
kαckα

Hhyb =
�

kαb V
αb
k c

†
kαdb + H.c.

• Solve large cluster impurity problems, at and away from half filling, for small and large 
interactions (density-density), at finite temperature.

• No further approximations (Δτ - errors, bath discretization, ...).

Computationally hard part: obtaining the impurity Greenʼs function / self energy from this 
Hamiltonian:

Cluster DMFT – impurity solvers

http://arxiv.org/find/cond-mat/1/au:+Millis_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Millis_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Lichtenstein_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Lichtenstein_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Werner_P/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Werner_P/0/1/0/all/0/1
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
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E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)
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i �i(ni↑ + ni↓) + Uni↑ni↓

Hbath =
�
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†
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�
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Only Candidates: Continuous-Time quantum Monte Carlo algorithms. We use: 
Continuous-Time Auxiliary Field (CT-AUX) algorithm.

Cluster DMFT – impurity solvers

http://arxiv.org/find/cond-mat/1/au:+Millis_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Millis_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Lichtenstein_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Lichtenstein_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Werner_P/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Werner_P/0/1/0/all/0/1
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003


Diagrammatic expansion of the partition function of an impurity model in the interaction or 
the hybridization, sampling of the resulting series stochastically up to infinite order. 

HQI = Ha + Hb

Hybridization Expansion Continuous-Time Auxiliary Field

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)P. Werner, A. Comanac, L. de Medici, M. Troyer, and 
A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

Ha = Hloc;
Hb = Hhyb + Hbath

Exponential scaling in size of local Hilbert 
space 

Ha = Hbath + Hhyb + H
0
loc;

Hb = H
I
loc

Efficiency dependent on type of 
interaction in H

I
loc

Z = Tr Tτe
−βHa exp

�
−

�
β

0
dτHb(τ)

�
=

�

k

(−1)k

�
β

0
dτ1 . . .

�
β

τk−1

dτkTr
�
e
−βHaHb(τk)Hb(τk−1) . . . Hb(τ1)

�

Continuous-Time quantum Monte Carlo
impurity solvers

Review: E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. 
Troyer, P. Werner, arXiv:1012.4474 (Rev. Mod. Phys., in press)

http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
http://link.aps.org/doi/10.1103/PhysRevLett.97.076405
http://link.aps.org/doi/10.1103/PhysRevLett.97.076405
http://link.aps.org/doi/10.1103/PhysRevLett.97.076405
http://link.aps.org/doi/10.1103/PhysRevLett.97.076405
http://arxiv.org/find/cond-mat/1/au:+Millis_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Millis_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Lichtenstein_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Lichtenstein_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Troyer_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Werner_P/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Werner_P/0/1/0/all/0/1


Stochastic sampling of diagrams 
of the partition function:

No truncation of expansion! 0 β

Z =
∞�

k=0

�

s1,···sk=±1

� β

0
dτ1 · · ·

� β

τk−1

dτk

�
K

2β

�k

Zk({sk, τk}),

Zk({si, τi}) ≡ Tr
1�

i=k

exp(−∆τiH0) exp(siγ(n↑ − n↓)).

Partition function expansion

1− βU

K

�
ni↑ni↓ −

ni↑ + ni↓

2

�
=

1
2

�

s=±1

exp (γs(ni↑ − ni↓)) ,

cosh(γ) = 1 +
Uβ

2K
.

Auxiliary field decoupling of 
interaction term s=±1

0 β
τ1τ2 τ3τ4

s = 

E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)

Compute trace of product of 
exponentials of one-body operators as 
determinant of matrix.

Continuous-Time Auxiliary Field
impurity solver

http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
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E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL 82,57003 (2008)

Continuous-Time Auxiliary Field
impurity solver
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E. Gull, P. Staar, S. Fuchs,  P. Nukala, M. Summers, T. Pruschke, 
T.C. Schulthess, T. Maier, Phys. Rev. B 83, 075122 (2011)

Standard updates in auxiliary field impurity solvers: rank one operations (ger), O(N2) 
operations for O(N2) data: dominated by data access.

Sub-Matrix updates: based on matrix (gemm) operations: O(N3) operations on O(N2) data:  
runs at speed of (fast) CPU/Cache.

Linear algebra reformulated, overhead grows with size of Γ but operations 10x faster

Sub-Matrix updates

http://arxiv.org/abs/1010.3690
http://arxiv.org/abs/1010.3690
http://arxiv.org/abs/1010.3690
http://arxiv.org/abs/1010.3690
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Intermezzo: 3D Hubbard Model
Phys. Rev. Lett. 106, 030401 (2011)

T. Esslinger, Annu. Rev. Condens. 
Matter Phys. 1, 129-152 (2010)

ʻOptical Lattice Emulatorʼ: Goal is to 
experimentally simulate simple model 
Hamiltonians using cold atomic (fermionic) gases

Temperatures in experiment are high (for now).

See also talk by Lode Pollet, L45.00011 (Tuesday)

Test model: 3D Hubbard

H = −
�

�ij�,σ

tij(c†iσcjσ + c
†
jσciσ) + U

�

i

ni↑ni↓.

http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401


Questions to theory

What is the equation of state of this 
model? (for all fillings, as a function 
of U/t and T/t?) 

Exact answer needed.

When will we reach TN?

Phys. Rev. Lett. 106, 030401 (2011)

http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401


Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

Solve quantum impurity model self-consistently for a range of cluster sizes:

18 36 48 56 64 84 100
Compute thermodynamics: energy, 
density, entropy, free energy, 
double occupancy, spin correlation 
functions, …: Observable estimates 
and errors for a finite size system.

Extrapolate observable estimate to 
the infinite system size limit using 
known finite size scaling
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Fine size scaling behavior: Maier, Jarrell, Phys. Rev. B 65, 041104(R) (2002) 

U=8, n=1

http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://prb.aps.org/abstract/PRB/v65/i4/e041104
http://prb.aps.org/abstract/PRB/v65/i4/e041104


Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

Validation against lattice QMC (1/2 filling) and HTSE (high T)

Comparison HTSE / DCA?  
(6th , 8th ,10th order)

HTSE order by order 
convergence: at U=8 correct 
down to T ~ 1.6t (at half filling). 
Worse away from half filling.

Agreement of 10th order HTSE 
with DCA down to T~1.4t.

Agreement with lattice QMC 
within error bars with for all T

See also: in depth analysis of HTSE & DMFT by L. De Leo, J.S. Bernier, C. 
Kollath, A. Georges, V. W. Scarola, Phys. Rev. A 83, 023606 (2011)
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How well does single site DMFT work? 
(Single Site, PM self consistency)

First deviations at half filling are visible at 
T ~ 1.6t [ AFM TN at ~0.5t ]

Away from half filling, for n ≤ 0.7: same 
behavior as in 2D; DMFT is essentially 
exact, no momentum dependence of the 
self energy:
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Phys. Rev. Lett. 106, 030401 (2011)
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Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

Solve quantum impurity model self-consistently for a range of cluster sizes:

18 36 48 56 64 84 100
Compute thermodynamics: energy, 
density, entropy, free energy, 
double occupancy, spin correlation 
functions, …: Observable estimates 
and errors for a finite size system.

Extrapolate observable estimate to 
the infinite system size limit using 
known finite size scaling
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http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://prb.aps.org/abstract/PRB/v65/i4/e041104
http://prb.aps.org/abstract/PRB/v65/i4/e041104
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Solve quantum impurity model self-consistently for a range of cluster sizes:

18 36 48 56 64 84 100
Compute thermodynamics: energy, 
density, entropy, free energy, 
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Results for 
finite clusters without 
extrapolations are 

not accurate!

Fine size scaling behavior: Maier, Jarrell, Phys. Rev. B 65, 041104(R) (2002) 
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Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

Solve quantum impurity model self-consistently for a range of cluster sizes:

18 36 48 56 64 84 100
Compute thermodynamics: energy, 
density, entropy, free energy, 
double occupancy, spin correlation 
functions, …: Observable estimates 
and errors for a finite size system.

Extrapolate observable estimate to 
the infinite system size limit using 
known finite size scaling
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Finite Size 
Scaling can be done 
controlled and with 

high accuracy

Fine size scaling behavior: Maier, Jarrell, Phys. Rev. B 65, 041104(R) (2002) 
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Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

k-dependence of the self energy systematically reintroduced, convergence 
for self energy observed: Approximation controlled
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convergence of the self energy 
as a function of cluster size.
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Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

k-dependence of the self energy systematically reintroduced, convergence 
for self energy observed: Approximation controlled
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convergence of the self energy 
as a function of cluster size.
Intermediate temperature T/t = 
0.5: Convergence visible, 
extrapolation needed.
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Controlling DCA
Phys. Rev. Lett. 106, 030401 (2011)

k-dependence of the self energy systematically reintroduced, convergence 
for self energy observed: Approximation controlled

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(π, π, π) (π, π, 0) (π, 0, 0) (0, 0, 0) (π, π, π)

Σ
(i

ω
0
)/

t

k

1 18 84 100 sites

Re
Im

Re
Im

Re
Im

Re
Im

High temperature T/t = 1: Exact 
convergence of the self energy 
as a function of cluster size.
Intermediate temperature T/t = 
0.5: Convergence visible, 
extrapolation needed.

Low temperature T/t = 0.35: 
Convergence not obvious, 
critical regime with diverging 
correlation length not well 
captured. (~TN)
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Finite Size Simulations vs DCA
Phys. Rev. Lett. 106, 030401 (2011)

comparison data: Fakher 
Assaad

• Convergence in DCA is faster: results from 64-84-100 sites comparable to 63, 83, 103 
sites in lattice simulation.

• Sign problem is better (ʻbath helps with sign problemʼ) near half filling.
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2D: U=4
36-site cluster
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3D Hubbard Model (conclusions)
Phys. Rev. Lett. 106, 030401 (2011)

Finite size scaling feasible for non-trivial systems in 
practice: change the status of cluster DMFT from an 
uncontrolled approximation to a method for obtaining 
controlled results with accurate error bars, similar 
to BSS / finite Lattice simulations

We have solved the 3D Hubbard model (at high temperature)! Full tables, 
entire phase diagram with energies, densities, entropies, double 
occupancies, spin correlation functions available online

Nontrivial regime accessible: about 5x 
lower in temperature
than HTSE & DMFT.

http://prl.aps.org/supplemental/PRL/v106/i3/e030401

http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://link.aps.org/doi/10.1103/PhysRevLett.106.030401
http://prl.aps.org/supplemental/PRL/v106/i3/e030401
http://prl.aps.org/supplemental/PRL/v106/i3/e030401


Cluster DMFT
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Variation of cluster sizes and geometries, crucial to establish robustness of features!

In this talk: cluster geometries of size 2–16 (larger: hampered by sign problem)

Clear Nodal / Antinodal separation on clusters large enough.

In DCA: No periodization / interpolation schemes.
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In this talk: cluster geometries of size 2–16 (larger: hampered by sign problem)

Clear Nodal / Antinodal separation on clusters large enough.
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2D Hubbard with tʼ: Generic Phase Diagram

See also:
C. Huscroft et al., Phys. Rev. Lett. 86, 139 (2001),
A. Macridin, et al., Phys. Rev. Lett. 97, 036401 (2006),
O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92, 226402 (2004),
Park et al., Phys. Rev. Lett. 101, 186403 (2008)
E. Gull, P. Werner, X. Wang, M. Troyer, and A. J. Millis, EPL 84, 37009 (2008),
Y. Z. Zhang and M. Imada, Phys. Rev. B 76, 045108 (2007),
M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, and A. Georges, EPL 85, 57009 (2009)
…and several other studies…

P. Werner, E. Gull, O. Parcollet, A. J. Millis, Phys. Rev. B 80, 045120 (2009) (short version, 8-site)
E. Gull, O. Parcollet, P. Werner, A. J. Millis, Phys. Rev. B 80, 245102 (2009) (long version, tʼ, 8-site)
E. Gull, M. Ferrero, O. Parcollet,A. Georges, A.J. Millis, Phys. Rev. B 82, 155101 (2010) (cluster size dependence)
N. Lin, E. Gull, and A.J. Millis, Phys. Rev. B 82, 045104 (2010) (analytic continuations, Raman, c-axis)

New aspects:
Larger clusters, lower temperatures, scans of entire phase diagrams: 
enabled by new computational methods.

http://iopscience.iop.org/0295-5075/85/5/57009/
http://iopscience.iop.org/0295-5075/85/5/57009/
http://prb.aps.org/abstract/PRB/v80/i4/e045120
http://prb.aps.org/abstract/PRB/v80/i4/e045120
http://prb.aps.org/abstract/PRB/v80/i24/e245102
http://prb.aps.org/abstract/PRB/v80/i24/e245102
http://prb.aps.org/abstract/PRB/v82/i15/e155101
http://prb.aps.org/abstract/PRB/v82/i15/e155101
http://prb.aps.org/abstract/PRB/v82/i4/e045104
http://prb.aps.org/abstract/PRB/v82/i4/e045104
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Phase Diagram
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FLL

P. Werner, E. Gull, O. Parcollet, A. J. Millis, Phys. Rev. B 80, 045120 (2009)
E. Gull, O. Parcollet, P. Werner, A. J. Millis, Phys. Rev. B 80, 245102 (2009) 
E. Gull, M. Ferrero, O. Parcollet,A. Georges, A.J. Millis, Phys. Rev. B 82, 155101 (2010)

see also: Liebsch, Tong, Phys. Rev. B 80, 165126 (2009) for CDMFT

MSD
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M

I
For weak interaction: Fermi-Liquid (-like) phase (FLL)

Crossover: At slightly larger interaction Momentum-Space 
Differentiation (MSD), Each momentum sector consistent 
with Fermi Liquid, but variations between momentum sectors

Transition 1: (Continuous, at the T accessible) to a Sector 
Selective Phase: Anti-nodal part of the Fermi surface gapped), 
nodal part metallic. Analogous to orbitally selective Mott transition

Transition 2: (First Order) to a Mott insulating Phase. All parts 
of the noninteracting Fermi surface gapped

Interaction transitions at half filling

x

U

U

MI

PG/
SS

MSD

FL

Momentum selectivity proposed in minimal 2-site model: M. Ferrero, P. S. Cornaglia, L. De Leo, 
O. Parcollet, G. Kotliar, and A. Georges, EPL 85, 57009

http://prb.aps.org/abstract/PRB/v80/i4/e045120
http://prb.aps.org/abstract/PRB/v80/i4/e045120
http://prb.aps.org/abstract/PRB/v80/i24/e245102
http://prb.aps.org/abstract/PRB/v80/i24/e245102
http://prb.aps.org/abstract/PRB/v82/i15/e155101
http://prb.aps.org/abstract/PRB/v82/i15/e155101
http://prb.aps.org/abstract/PRB/v80/i16/e165126
http://prb.aps.org/abstract/PRB/v80/i16/e165126
http://iopscience.iop.org/0295-5075/85/5/57009/
http://iopscience.iop.org/0295-5075/85/5/57009/
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On the hole doped side: same story as in interaction transition.

On the electron-doped side: direct transition to the Mott Insulator. Large tʼ: 
first order. Small tʼ: intermittent sector selective phase, continuous.
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Sector Selective Regime: Spectra

ings larger than x=0.11, a gap is not visible at the tempera-
tures T! t /20 accessible to us although a weak feature in the
x=0.13 curve suggests that the gap is still present. However,
certainly at x=0.11 and perhaps at x=0.13 the gap magnitude
!as defined by the peak-to-peak distance in the spectral func-
tion" is not small. We therefore suspect that at least a reduc-
tion in density of states would be observed at higher dopings
if we were able to perform the calculations at lower tempera-
tures.

The lower panel of Fig. 3 shows the !" /2," /2"-sector
spectral function at the same dopings. At the smallest doping,
a weak suppression of low-frequency density of states is evi-
dent but for most dopings this sector remains ungapped.

IV. INTERPLANE CONDUCTIVITY

An important early indication of the presence of a charge
pseudogap was provided by measurements of the frequency
dependence of the interplane conductivity.6 As can be seen
from Eq. !5", in high-Tc materials the matrix elements rel-
evant to the interplane conductivity highlight the zone-face
regions where the electron spectral function exhibits a gap
!see upper panel in Fig. 3".

Figure 4 shows the calculated temperature and doping de-
pendence of the interplane conductivity. The pseudogap is
visible as a temperature- and doping-dependent suppression
of the low-frequency interplane conductivity. The interplane
conductivity is suppressed over a relatively wide frequency
range; the suppression increases as the doping or temperature
decreases, and the gap fills in but does not close as tempera-
ture is increased. The calculations also reveal a weak maxi-
mum in the conductivity at an energy just above the
pseudogap. A somewhat broader version of this feature was
observed by Yu et al.59 It is possible that the relative sharp-
ness of the feature is an artifact related to our coarse graining
of momentum space, which might arise because the DCA
approximation necessarily produces a gap that is piecewise
continuous; and as is known from the familiar case of s-wave
BCS superconductivity a momentum-independent gap pro-
duces a peak. The results are reasonably consistent with
experiment.6,7,12,59 Reference 59 reports a high-energy
pseudogap of a magnitude consistent with what is found
here. It is important to note that in the widely studied
YBa2Cu3O6+x material, the interplay of strong local-field ef-
fects !arising from the bilayer structure" and phonon effects
produce complicated structures in the low-frequency conduc-
tivity which are not represented in the present
calculation.59–61

Conductivities may be characterized by “spectral weight,”
the integrated area in some frequency range. The total spec-
tral weight obeys an “f-sum” rule, which for the model stud-
ied here is
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" Im G!$" averaged over sector C containing the !0,"" point
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panel", calculated using the eight-site DCA approximation at hole
dopings indicated with U=7t and inverse temperature '=20 / t
'200 K.
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found to be approximately of Lorentzian form with dc value 0.65.
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produce complicated structures in the low-frequency conduc-
tivity which are not represented in the present
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for the nodal sector.for the antinodal sector.

when reducing doping from x=0.157 to x=0.047: gap develops in the antinodal 
part of BZ, nodal part stays metallic.

N. Lin, E. Gull, and A.J. Millis, Phys. Rev. B 82, 045104 (2010)
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Generic Phase Diagram

6

(the chemical potential corresponding to half filling) but
the density of states in sector C is sharply peaked at ε cor-
responding to the Van Hove energy ε(px = 0, py = π/2)
(= 0 at t′ = 0) and is narrower than that of sector B. It
is natural that the sector with the narrower band and the
higher density of states should undergo the Mott transi-
tion first.19,20,21,32,33 As t′ is changed from zero the posi-
tion of the Van Hove point shifts in energy, although the
positions of the band edges of sector C do not change
[the bandwidth of sector B does change from 4

√
2t− 4t′

to 4t for |t′| > (
√

2 − 1)t]. The chemical potential corre-
sponding to half filling similarly shifts. The existing lit-
erature on the orbitally selective Mott phenomenon does
not provide guidance on the fate of the sector-selective
transition in these circumstances. We note, however,
that a metric for estimating the location of the Mott
transition is to compare the interaction energy to the
U = 0 kinetic energy given by

∫

sector
(εp − µ)f(εp − µ)

with f the Fermi function. As t′ is shifted from zero
to −0.3t the kinetic energies of the B and C sectors
change from (−0.084,−0.018) to (−0.035,−0.023); thus
as t′ is changed from zero the kinetic energies of the bands
become similar, explaining the disappearance of the or-
bitally selective phase.
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FIG. 7: Phase diagram at interaction strength U = 7t as a
function of chemical potential µ/t and second-neighbor hop-
ping t′/t, from measurements of βG(β/2). Positive µ corre-
sponds to electron doping and negative µ to hole doping. A
particle-hole transformation converts t′ → −t′ so it is suffi-
cient to show only one sign of t′ but both polarities of doping.
Dashed lines (circles and squares) indicate chemical poten-
tials at which the C-sector gap opens, heavy solid lines (dia-
monds and triangles) indicate chemical potentials where the
B-sector gap opens. Note that for −0.15t the critical chemical
potential µeff at which the sector-selective transition occurs
corresponds to a hole doping of x ≈ 0.109. Thick black line:
location of the coalesced first-order transition.

B. Doping-driven transition, fixed interaction

Sector-selective transitions occur also as functions of
doping at fixed interaction. For interaction strengths ly-
ing in the orbitally selective (shaded) region of Fig. 5
sector B remains gapless as the chemical potential is
changed whereas there is a critical doping level (or chem-
ical potential) beyond which the sector C gap closes. We
do not consider this case further, focusing instead on U
large enough that both sectors are gapped at half fill-
ing. Figure 7 presents a phase diagram in the space of
chemical potential and t′ for U = 7t. For small |t′|, both
electron and hole doping are seen to produce a two-step
transition, in which the first stages of doping take place
in sector B and only subsequently does sector C start
to be doped. Interestingly, as −t′ is increased a qualita-
tive particle-hole asymmetry develops. On the electron-
doped side the two transitions coalesce (within our res-
olution) to one and become first order15,34 while on the
hole-doped side the presence of two transitions appears
to be a generic feature.

V. CHARACTERIZATION OF TRANSITIONS

A. Interaction-driven transition

In this section we characterize the interaction-driven
transitions found in the eight-site cluster. We begin by
summarizing what is known about metal-insulator tran-
sitions in other dynamical mean-field theory implemen-
tations. In the single-site dynamical mean-field approx-
imation the correlation-driven metal-insulator transition
occurs at a large U and has a complicated structure in
which a preformed, large-magnitude gap exists on both
sides of the transition and metallic vs insulating behav-
ior is determined by the presence or absence of midgap
states.27 On the other hand, in four-site cluster DMFT
approximations the transition occurs at a relatively small
U ∼ 5t and is apparently always first order, characterized
by the discontinuous opening of a gap as the correlation
strength is increased above a critical value.9,10

Figure 8 shows our results for the sector density of
states for several t′ values. We observe, in agreement
with Fig. 2 of Ref. 18 which presents data for only two
t′ but at the lower temperature βt = 40, that for t′ near
zero the two transitions are well separated in U and that,
while the C-sector transition appears smooth, marked
by a crossing point in βG(β/2), the B-sector transition
seems discontinuous, marked by an apparent jump in
G(β/2). As the magnitude of t′ increases, the C tran-
sition steepens, and beyond the point where the sector-
selective phase disappears the single transition becomes
first order as in the four-site case.

We may understand the change in transition order
from consideration of the sector densities. The breaking
of particle-hole symmetry caused by a nonzero t′ means
that in the weakly correlated metallic phase at total den-
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FIG. 16: (Color online) Upper panel: real and imaginary
parts of ΣX(ω) for electron doping obtained via extrapola-
tion to real ω. The intersections of ReΣX (ω)−µ with ω− εk

(straight line) provide the pseudogap. Lower panel: spec-
tral distributions derived via extrapolation of lattice Green’s
function components Gm(iωn) to real ω. The average density
corresponds to A(ω) = −

1

4π
Im [GΓ(ω) + GM (ω) + 2GX(ω)].

U = 2.5 is reduced to U = 1.5 and when t′ = −0.3t is re-
placed by t′ = 0. Fig. 15 illustrates the reduction of δc for
U = 2.5 when hole doping is replaced by electron doping.
A similar reduction is found for U = 1.5 (not shown). In
Fig. 17 we collect these data and display the phase dia-
gram of the present Hubbard model for electron and hole
doping. At finite temperature the values of δc can only
be determined within an accuracy of about ±0.02. For
clarity, these margins are not plotted in Fig. 17. Despite
this uncertainty, the results demonstrate several trends:
for hole doping δc diminishes with decreasing U and when
t′ = −0.3t is replaced by t′ = 0. Moreover, for t′ = −0.3t
the critical doping decreases when hole doping is replaced
by electron doping. As pointed out above, the varia-
tion of δc is surprisingly small, despite the rather large
changes in U and t′.

F. Momentum Variation

According to the results shown in Fig. 6 the non-Fermi-
liquid properties of the two-dimensional Hubbard model
at low hole doping are mainly associated with the X com-
ponent of the self-energy. Only very close to the Mott
transition the M component begins to dominate since
its imaginary part changes from ∼ ωn to ∼ 1/ωn. The
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FIG. 17: (Color online) Phase diagram of two-dimensional
Hubbard model calculated within ED/CDMFT for 2×2 clus-
ters. The Fermi-liquid phase at large hole or electron doping
is turned into a non-Fermi-liquid phase at small doping. The
symbols for U = 1.5 and U = 2.5 indicate the approximate
critical doping δc for t′ = −0.075 (solid red circles) and for
t′ = 0 (empty blue circles). The vertical line at δ = 0 marks
the Mott phase at half-filling. The critical U indicated by ×

is about 1.4 for t′ = 0 and t′ = −0.3t. The long-dashed green
line denotes the approximate lower bound of the non-Fermi-
liquid domain.

cluster components of the self-energy may be used to con-
struct an approximate momentum dependent lattice self-
energy by using the same periodization as in Eq. (19) for
the Green’s function. Thus,40

Σ(k, ω) = αΓ(k)ΣΓ(ω) + αM (k)ΣM (ω) + αX(k)ΣX(ω)
(20)

where

αΓ(k) = [1 + coskx][1 + cosky]/4

αM (k) = [1 − coskx][1 − cosky]/4 (21)

αX(k) = [1 − coskxcosky ]/2.

The k-resolved spectral distributions are then given by

A(k, ω) = −
1

π
Im (ω + µ − ε(k) − Σ(k, ω))−1. (22)

An alternative is to periodize instead the cumulant
matrix49 M(ω) = 1/[ω + µ − Σ(ω)] which can be di-
agonalized in the same manner as the self-energy. Thus,
the molecular orbital components of M(ω) are given by
Mm(ω) = 1/[ω + µ−Σm(ω)] and the momentum depen-
dent lattice cumulant M(k, ω) can be derived from an
expression analogous to Eq. (20)

M(k, ω) = αΓ(k)MΓ(ω)+αM (k)MM (ω)+αX(k)MX(ω).
(23)

The lattice self-energy in this approximation takes the
form

Σ(k, ω) = ω + µ − 1/M(k, ω). (24)

In the upper panel of Fig. 18 we compare these two
versions of Σ(k, ω) at ω = 0 for δ = 0.06 hole doping.
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insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.
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Sector Selective Regime: ARPES & Pseudogap

Sector selective transition is the cluster DMFT 
representation of  pseudogap physics.

insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.
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quency, is clearly visible for x!0.11, while for x=0.13 and
0.16 there is no pole, only a weak modulation indicating a
non-Fermi-liquid scattering rate. Whether this modulation
would evolve into a pole as T→0 is an interesting open
question. Liebsch et al.44 analyzed the self-energy pole struc-
ture in the !0,"" sector of a four-site cellular dynamical
mean-field !C-DMFT" calculation, finding a similar doping
dependence of the pole strength. They reported a strong de-
pendence of the pole position on doping; this variation is not
found in the eight-site cluster studied here.

An alternative characterization of electronic behavior is

the quasiparticle residue Z= #1−$ ! Re #!$"
!$ $$=0%−1. Because

within each sector, the self-energy is momentum indepen-
dent, Z gives the renormalization of the Fermi velocity as

v!=Zv. This renormalization has physical significance if the
self-energy is Fermi-liquidlike, meaning that the imaginary
part is not too large and the real part is linear in frequency
over a reasonable range about $=0. We determine the
boundaries of the Fermi-liquid regime by first observing that
the real part of the self-energy Re # is linear in frequency
over the range −$L!$!$H !see Appendix A, Fig. 16", and
then comparing the magnitude of the imaginary part of
the self-energy at zero frequency to the change of $
− #Re #!$"−Re #!0"% over the linear range. If the change
#$H−Re #!$H"%− #$L−Re #!$L"% is larger than −2 Im #!$
=0" we identify the regime as Fermi-liquidlike. For an illus-
tration of the determination of Fermi-liquid behavior, see
Appendix A.

This condition is reasonably well satisfied for sector B for
dopings x%0.08 !and marginally satisfied for x=0.08". Simi-
larly sector C is found to be Fermi-liquidlike for dopings x
=0.18 and greater but for x=0.06, the self-energy in both
sectors is far from Fermi-liquidlike and the quantity Z cannot
be interpreted as a “quasiparticle weight.”

The solid points in the upper panel of Fig. 14 show the
value of Z for the sector B containing the zone-diagonal
point !" /2," /2" and the sector C containing the zone-face
point !0,"" for dopings for which the sectors are Fermi-
liquidlike. The open symbols show the mathematically de-
fined values of Z in the regime where it has no physical
meaning because the regime is not Fermi-liquidlike. For dop-
ings in the Fermi-liquid regime, the Z in sector B is linear in
x but extrapolates to a small nonzero value at x=0. This is
approximately but not exactly the behavior Z&x expected in
a doped Mott insulator. The lower panel of Fig. 14 shows
that the doping dependence of the low-frequency optical
conductivity weight is essentially the same as that of the
nodal-sector Z.

VIII. SUMMARY

In the eight-site DCA approximation to the solution of the
two-dimensional Hubbard model, the doping-driven Mott
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FIG. 14. !Color online" Upper panel: doping dependence of the
quasiparticle residue Z calculated for sector B containing the
!" /2," /2" point and sector C containing the !0,"" point from
analytically continued self-energies at inverse temperature &=20 / t
'200 K. The filled symbols represent dopings x'0.08 for sector
B and x'0.18 for sector C where the self-energy is Fermi-
liquidlike as defined in the text. Open symbols are mathematically
defined from our data but we believe are not physically meaningful
because the scattering rate is too large. Lower panel: approximate
proportionality of optical spectral weight and Z. Triangles !black":
integral from 0 to $=2t of calculated optical conductivities, divided
by renormalization factor Z of sector B, plotted against doping x.
Squares !red": integral from 0 to $=2t of sector B contribution to
conductivity, divided by renormalization factor Z of sector B and
plotted against doping.
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Figure 2. Pseudogap (Epg = 2!pg) and superconducting (Esc ∼ 5kBTc) energy scales for a number of HTSCs with T max
c ∼ 95 K

(Bi2212, Y123, Tl2201 and Hg1201). The datapoints were obtained, as a function of hole doping x, by angle-resolved photoemission
spectroscopy (ARPES), tunneling (STM, SIN, SIS), Andreev reflection (AR), Raman scattering (RS) and heat conductivity (HC).
On the same plot we are also including the energy "r of the magnetic resonance mode measured by inelastic neutron scattering (INS),
which we identify with Esc because of the striking quantitative correspondence as a function of Tc. The data fall on two universal curves
given by Epg = Emax

pg (0.27 − x)/0.22 and Esc = Emax
sc [1 − 82.6(0.16 − x)2], with Emax

pg = Epg(x =0.05) = 152 ± 8 meV and
Emax

sc = Esc(x = 0.16) = 42 ± 2 meV (the statistical errors refer to the fit of the selected datapoints; however, the spread of all available
data would be more appropriately described by ±20 and ±10 meV, respectively).

show that one fundamental and robust conclusion can be
drawn: the HTSC phase diagram is dominated by two energy
scales, the superconducting transition temperature Tc and the
pseudogap crossover temperature T ∗, which converge to the
very same critical point at the end of the superconducting dome.
Establishing whether this phenomenology can be conclusively
described in terms of a coexisting two-gap scenario, and
what the precise nature of the gaps would be, will require a
more definite understanding of the quantities measured by the
various probes.

2. Emerging phenomenology

The literature on the HTSC superconducting gap and/or
pseudogap is very extensive and still growing. In this situation
it seems interesting to go over the largest number of data
obtained from as many experimental techniques as possible,
and look for any possible systematic behavior that could be
identified. This is the primary goal of this focused review. We
want to emphasize right from the start that we are not aiming
at providing exact quantitative estimates of superconducting
and pseudogap energy scales for any specific compound or
any given doping. Rather, we want to identify the general
phenomenological picture emerging from the whole body of
available experimental data [5, 9, 13, 16, 18, 34–72].

We consider some of the most direct probes of low-
energy, electronic excitations and spectral gaps, such as
angle-resolved photoemission (ARPES), scanning-tunneling
microscopy (STM), superconductor/insulator/normal-metal

(SIN) and superconductor/insulator/superconductor (SIS)
tunneling, Andreev reflection tunneling (AR) and Raman
scattering (RS), as well as less conventional probes such as
heat conductivity (HC) and inelastic neutron scattering (INS).
The emphasis in this review is on spectroscopic data because
of their more direct interpretative significance; however,
these will be checked against thermodynamic/transport data
whenever possible. With respect to the spectroscopic data, it is
important to differentiate between single-particle probes such
as ARPES and STM, which directly measure the one-electron
excitation energy ! with respect to the chemical potential (on
both side of EF in STM), and two-particle probes such as
Raman and inelastic neutron scattering, which instead provide
information on the particle-hole excitation energy 2!. Note
that the values reported here are those for the ‘full gap’ 2!
(associated with either Esc or Epg), while frequently only half
the gap ! is given for instance in the ARPES literature. In
doing so one implicitly assumes that the chemical potential lies
half-way between the lowest-energy single-electron removal
and addition states; this might not necessarily be correct but
appears to be supported by the direct comparison between
ARPES and STM/Raman results. A more detailed discussion
of the quantities measured by the different experiments and
their interpretation is provided in the following subsections.
Here we would like to point out that studies of B2g and
B1g Raman intensity [19, 40, 52], heat conductivity of nodal
quasiparticles [70,71] and neutron magnetic resonance energy
"r [42] do show remarkable agreement with superconducting
or pseudogap energy scales as inferred by single-particle

3

Hüfner et al., Rep. Prog. Phys. 71, 062501(2008)

The pseudogap is a feature of the Hubbard model at intermediate correlation strength. 
No long range order is required.
Remarkable agreement with other experimental probes: c-axis, in-plane optical 
conductivity, Raman. 

ARPES: Shen et al., Science 307, 901 (2005)
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which provide access to this sector!. These are the two sec-
tors which contain the Fermi surface and for which !!"K ,0!
has meaning as a scattering rate. Comparison of electron and
hole dopings shows that while momentum-space differentia-
tion sets in at about the same absolute value of doping in the
two cases, the degree of differentiation between sectors
"0,"! and "" /2," /2! is greater on the hole-doped side than
on the electron-doped side.

We turn now to a more detailed examination of results
from the 8-site cluster, which is large enough allow a direct
comparison of the nodal and antinodal regions of the Fermi
surface, but is small enough to allow detailed computations
down to relatively low temperatures. The two panels of Fig.
10 show !!"K ,0! and the quasiparticle weight/velocity
renormalization ZK for the nodal K= "" /2," /2! and antin-
odal K= "" ,0! sectors as a function of doping at a relatively
low and a relatively high temperature.

Comparison of the two panels of Fig. 10 shows that the
momentum-space differentiation is marked primarily by a
variation in scattering rate. As doping is reduced, the Fermi-
surface scattering rates increase rapidly and a marked differ-
ence between the two Fermi surface sectors develops with
the antinodal sector K= "" ,0! characterized by a much more
rapidly growing scattering rate. Further, the scattering rates
exhibit a pronounced particle-hole asymmetry. However,
while the inverse mass enhancement/velocity renormaliza-
tion ZK decreases as doping is decreased, the variation with
doping is much less dramatic and, interestingly, there is very
little particle-hole asymmetry or difference between the two
momentum sectors. We also note that the nodal quasiparticle
residue Z""/2,"/2! appears to extrapolate to a nonzero value at
n=1. "A different result was found using self-energy interpo-
lations in superconducting state CDMFT calculations on
4-site clusters.58,59! This is inconsistent with the Brinkman-
Rice theory but qualitatively consistent with data on high-Tc
materials, where photoemission measurements indicate a
zone-diagonal quasiparticle velocity which is only weakly
doping dependent.13 "Very recent measurements indicate that
if the velocity is measured on very low scales, below the
resolution of the numerics in this paper or of previous pho-
toemission data a stronger doping dependence of the velocity
is found.60!

Figure 11 presents the temperature dependence of the
nodal and antinodal scattering rates obtained for the 8-site
cluster for selected densities. To highlight the temperature
dependence we plot !! /T. While the temperature range ac-
cessible to us is too limited to establish any specific form of
temperature dependence it is clear that at the higher doping
isotropic Fermi-liquid regime "n=0.70!, the scattering rates
drop faster than linearly at low T while at the lower doping
"n=0.80; momentum-differentiation regime! the two sectors
have different temperature dependence at low temperature
with the nodal sector scattering rate vanishing more rapidly
than T at low T and the antinodal rate vanishing less rapidly.
At the intermediate doping n=0.75 on the boundary between
the two regimes the behavior is intermediate. These features
are in qualitative agreement with the momentum-space varia-
tion in the electronic mean free path inferred from angular-
dependent magnetoresistance experiments.7,8 For highly
overdoped cuprates these experiments reveal a scattering rate
which is reasonably isotropic around the Fermi surface and
exhibits a relatively conventional temperature dependence.
Below a critical doping a momentum-space differentiation
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Isotropic Fermi Liquid regime

Momentum Space 
Differentiation

Red: Nodal scattering rates
Blue: Antinodal scattering rates

Momentum space differentiation (n ~ 0.8): Nodal scattering rate vanishing more rapidly 
than antinodal scattering rate.
Isotropic Fermi Liquid regime (n ~ 0.7): Nodal and Antinodal scattering rate identical.
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description of γaniso(T ) over the full temperature range studied, as indicated by the dashed lines
in the lower panel. This additional T 2 term in γaniso(T ) was not picked out in the original lower
temperature measurements [11] as its contribution to γaniso(T ) was too small to be significant.
The relative magnitudes of the two components of γaniso(T ) are plotted for Tl15K in the bottom
panel of figure 3 along with γiso(T ). There is roughly 60% anisotropy in the T 2 scattering
rate within the basal plane, comparable to the variation in the density of states [17]. While
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Similar to anisotropic component observed in Angle-
Dependent Magneto-Resistance
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Conclusions

2D Hubbard model, phase diagram: contains many features 
observed in High-Tc experiments: Momentum space 
differentiation, pseudogap: Node metallic, antinode insulating. No 
long-ranged order required.

Sector selectivity is the Cluster DMFT signature of the pseudogap, 
Features are robust: observed for all clusters large enough, also 
in CDMFT, no interpolation / analytical continuation FLL

MSD

MSD

PG/SS

M
I

U

x

We have established DCA as a reliable tool to obtain results for the 
thermodynamic limit (for the infinite (lattice) system).

Algorithmic and numerical improvements: much larger systems 
accessible, scans of phase space possible.-0.54
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