INT Seattle, 16 May 2011

Strongly interacting Fermi-Fermi mixture of ⁶Li and ⁴⁰K

Rudolf Grimm

"Center for Quantum Physics" in Innsbruck

iniversitä

University of Innsbruck Austrian Academy of Sciences

the ⁶Li-⁴⁰K mixture

more candidates: non-alkali species ³He*, ⁸⁷Sr, ¹⁷¹Yb, ¹⁷³Yb, ⁵³Cr, ¹⁶¹Dy, ¹⁶³Dy, ¹⁶⁷Er

I. mass imbalance

very rich phases

Petrov et al., PRL **99**, 130407 (2007) crystalline phase

> novel few-body phenomena

Iskin & Sá de Melo, PRL 97, 100404 (2006)

mediated interactions three-body states

different resonance lines: *species-specific optical potentials*

selective manipulation of one component !

outline

ultracold.atoms

the FFF story: tunability in the mixture

Naik et al., EPJD (2011)

a first step: hydrodynamic expansion

Trenkwalder et al., PRL **106**, 115304 (2011)

more insight: rf spectroscopy

how about tunability?

ultracold.atoms

review: Chin, Grimm, Julienne, Tiesinga, RMP 74, 1205 (2009)

Feshbach spectroscopy: a long story

Wille et al., PRL 100, 053201 (2008)

the end of a long story Naik et al., EPJD (2010)

ultracold.atoms

				Ex	periment	Coupled channels							
	Channel	$M_{\rm tot}$	Group	B_0 (G)	(G)	Ref.	B_0 (G)	Δ (G)	$a_{ m bg}/a_0$	$\frac{\delta \mu / h}{(MHz/G)}$	$a_{res} (10^6 a_0)$	$s_{\rm res}$	γ_B (μ G)
	ba	-5	\triangle	215.6		[4]	215.52	0.27	64.3	2.4	160	0.0048	0.11
	aa	-4	0	157.6 168.170(10)		[4] [8]	$157.50 \\ 168.04$	$0.14 \\ 0.13$	$65.0 \\ 63.4$	$2.3 \\ 2.5$		0.0023 0.0023	0 0
	ab	-3	0	149.2 159.5		[4] [4]	$149.18 \\ 159.60$	0.23 0.51	$67.0 \\ 62.5$	$2.1 \\ 2.4$	14 5.3	0.0037 0.0086	1.1 6.1
			٥	165.9		[4]	165.928	$2 imes 10^{-4}$	58	2.5	0.3	3.3×10^{-6}	0.04
_	ac	-2	0	141 7		[4]	141.46	0.25	67.6	2.1	75	0.0040	2.3
L				154.707(5)	0.92(5)	this work	154.75	0.88	63.0	2.3	4.0	0.014	14
			•	162.7		[4]	162.89	0.09	56.4	2.5	0.89	0.0014	5.7
theory	ad	-1		he "oj	otin	um"	149.40	onan		(t <u>o</u> r (us)	0.0038 0.017	3.7 20
theory		0	0				159.20	0.33	55.8	2.45	1.4	0.0051	13
~	ae	0					127.01 143.55 154.81	0.22 1.20 0.69	68.5 65.7 55.1	2.05 2.2 2.4	2.8 2.8 1.6	0.0035 0.020 0.010	5.4 29 24
her	af	1	0				120.33 137.23 149.50	0.20 1.19 1.14	66.8 65.3 53.6	2.1 2.2 2.4	1.7 2.2 1.6	0.0031 0.019 0.016	7.9 35 27
Tom Hanna	ag	2	0				114.18 130.49	0.14 1.07 1.57	67.4 66.4	2.4 2.1 2.2 2.4	0.97 1.8 1.6	0.0023 0.018 0.022	9.7 40 52
	ah	3	> 0 0				108.67 123.45 135.90	0.098 0.86 1.87	66.6 68.4 55.9	2.4 2.2 2.3 2.45	0.48 1.3 1.5	0.023 0.0016 0.015 0.029	14 44 72
921	ai	4	▼ 0 □ ◇				$ \begin{array}{r} 104.08 \\ 116.38 \\ 126.62 \end{array} $	0.06 0.54 1.97	65.9 68.6 54.7	2.25 2.4 2.6	0.19 0.98 1.3	0.0010 0.010 0.032	21 38 83
An II	aj	5	○	114.47(5)	1.5(5)	[7]	$\begin{array}{c} 100.90\\ 114.78 \end{array}$	$0.02 \\ 1.81$	$64.3 \\ 57.3$	$2.3 \\ 2.3$	$ \begin{array}{c} 0.03 \\ 1.08 \end{array} $	$\begin{array}{c} 3.2\times10^{-4}\\ 0.027 \end{array}$	43 96

Paul Julienne

related work by Amsterdam-Eindhoven group

spin channels

ultracold.atoms

powerful tool-box of radio-frequency transitions

Li-K resonance @ 155 G

elastic scattering

inelastic two-body scattering

- only narrow (i.e. closed-channel dominated) resonances
- best choice (for us):
 155G resonance in 1-3 spin channel
- reasonable universal range: ~10mG

for typical experimental conditions:

- lifetime on resonance: ~10ms
- strongly interacting regime ±15mG

OK for experiments in strongly interacting regime

looking back into 2002

Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms

K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas*

Science 298, 2179 (2002)

hydrodynamic expansion first signature of strongly interacting regime

our experimental situation

ultracold.atoms

⁶Li:
$$N = 7.5 \times 10^4$$

 $E_F = 1.1 \,\mu\text{K}$
 $T = 300 \,n\text{K}$
⁴⁰K: $N = 1.5 \times 10^4$
 $E_F = 500 \,n\text{K}$

Li Fermi energy our leading energy scale!

$$1/k_F^{Li} \approx 3600 a_0$$

preparation of the strongly interacting mixture

need precise tuning with minimum losses

• start in weakly interacting spin channel (Li 1 - K 2)

ultracold.atoms

- precisely set magnetic field
- immediate rf-transfer (K 2 -> K 3)

strongly interacting mixture with density distributions defined by non-interacting case

• do experiments without any further delay (e.g. immediate release frome trap)

results

inversion of aspect ratio!

results

volume occupied by ⁶Li (⁴⁰K) decreases (increases): *"hydrodynamic drag"*

ultracold.atoms

ultracold quantum gases (Fermi-Fermi mixtures) high-energy physics (quark-gluon plasma)

"anisotropic expansion"

"elliptic flow"

new analogy

"hydrodynamic drag"

"collective flow"

NA44 collaboration, PRL 78, 2080 (1997)

can we image the hydrodynamic core?

ultracold.atoms

hydrodynamic core

how does all this depend on the interaction strength?

$1/(k_{F}^{Li}|a|) > 1 \implies |a| > 3500 a_{0}$ $|B-B_{0}| < 15 mG$

condition for strong interaction

fixed TOF 4ms, variable B

bimodal distributions

bimodal distributions

interim conclusion (March 2011)

ultracold.atoms

Trenkwalder et al., PRL 106, 115304 (2011)

first observation of a strongly interacting Fermi-Fermi mixture

high level of interaction control demonstrated

experiments on short timescale (few ms) possible without suffering from losses

... from single-species fermion experiments

interaction energy measurement

ultracold.atoms

analyzing the expanding clouds (quite involved...)

what kind of state is produced by the rapid rf quench?

more inspiration...

ultracold.atoms

... from single-species fermion experiments

our experimental situation (rf spectroscopy)

ultracold.atoms

Li Fermi energy our leading energy scale!

$$1/k_F^{Li} \approx 3000 a_0$$

probing the system by rf spectroscopy

four ways of doing rf spectroscopy

four ways of doing rf spectroscopy

how we do rf spectroscopy

ultracold.atoms

scattering state

scattering state

MH continuum

 $m\downarrow/(m\uparrow+m\downarrow) \times E_{F}\uparrow$

J.atoms

role of the FR character? broad vs. narrow

polaron?

NH continuum

mean field

attractive state mean field

```
m\downarrow/(m\uparrow+m\downarrow) \times E_{F}\uparrow
```

???

polaron?

J.atoms

theory: spectral function

ultracold.atoms

what we may expect for reverse rf spectroscopy

Pietro Massignan ICFO, Spain

Georg Bruun U Aarhus, Denmark

and what does the experiment tell us?

ultracold.atoms

π pulse (1 ms)

ultracold.atoms

π pulse (1 ms)

theory by Massignan and Bruun: attractive/ repulsive branch

ultracold.atoms

pulse 25x power (1 ms)

theory by Massignan and Bruun: attractive/ repulsive branch

ultracold.atoms

pulse 25x power (1 ms)

theory by Massignan and Bruun: attractive/ repulsive branch

magnetic detuning -20mG, $1/k_Fa = 1.1$

magnetic detuning -20mG, $1/k_Fa = 1.1$

survival of the attractive polaron?

ultracold.atoms

pi pulses and beyond

ultracold.atoms

pi pulses and beyond

ultracold.atoms

pi pulses and beyond

ultracold.atoms

coherent rf spectrocopy on many-body state

mapping out Rabi frequency and damping rate vs. B and δf

what can we learn from that?

polaron: sharp peak in spectrum -> Rabi oscillation continuum: no Rabi oscillation

coherence times? relaxation effects ?

role of the FR character? broad vs. narrow

polaron?

repulsive state

MH continuum

mean field

attractive state mean field

J.atoms

```
m\downarrow/(m\uparrow+m\downarrow) \times E_{F}\uparrow
```

???

polaron?

"standard" rf spectroscopy on attractive branch ultracold.atoms

+15mG (1/k_Fa \approx -0.8)

on resonance

 $-15mG (1/k_{F}a \approx -0.8)$

"standard" rf spectroscopy on attractive branch

same data,

... but now relative to polaronic ground state (Massignan-Bruun theory)

role of the FR character? broad vs. narrow

polaron?

repulsive state

NH continuum

mean field

attractive state mean field

```
m↓/(m↑+m↓) ×E<sub>F</sub>↑
```

???

polaron?

probing the repulsive polaron

ramp: 100mG in 20ms magn. detuning: $-12mG (1/k_Fa \approx +0.6)$ rf excitation: 0.3ms pi-pulse

let us conclude!

strongly interacting Fermi-Fermi mixture created

hydrodynamic expansion observed

lots of fun...

rf spectroscopy in polaronic regime (very ric<mark>h!)</mark>

many more things to come: rf and Bragg spectroscopy, lattices, low-D, mixed-D...

Innsbruck Fermi-Fermi team

ultracold.atoms

orian

Andrei Gerhard Frederik Devang Sidorov Hendl Spiegelhalder Naik

> Michael Andreas Jag Trenkwalder

Matteo Kohstal Zaccant

chris

Rudi Grimm

thank you for your attention!

FШF

universität Innsbruck

Der Wissenschaftsfonds.

Foundations and Applications of Quantum Science

European Network

EuroQUAM

Collaborative Research Project

FerMix