INT Seattle, 16 May 2011

Strongly interacting Fermi-Fermi mixture of ⁶Li and ⁴⁰K

ultracold.atoms

Rudolf Grimm

"Center for Quantum Physics" in Innsbruck

Austrian Academy of Sciences University of Innsbruck

the 6Li-⁴⁰K mixture

more candidates: non-alkali species ³He*, ⁸⁷Sr, ¹⁷¹Yb, ¹⁷³Yb, 53Cr, 161Dy, 163Dy, 167Er

I. mass imbalance

very rich phases

crystalline phase Petrov et al., PRL **99**, 130407 (2007)

> novel few-body phenomena

Iskin & Sá de Melo, PRL **97**, 100404 (2006)

different resonance lines: *species-specific optical potentials*

selective manipulation of one component !

outline

ultracold.atoms

the FFF story: tunability in the mixture

Naik et al., EPJD (2011)

a first step: hydrodynamic expansion

Trenkwalder et al., PRL **106**, 115304 (2011)

more insight: rf spectroscopy

how about tunability?

ultracold.atoms

review: Chin, Grimm, Julienne, Tiesinga, RMP 74, 1205 (2009)

Feshbach spectroscopy: a long story

Wille et al., PRL **100**, 053201 (2008)

the end of a long story Naik et al., EPJD (2010)

ultracold.atoms

Paul Julienne

related work by Amsterdam-Eindhoven group

spin channels

ultracold.atoms

powerful tool-box of radio-frequency transitions

Li-K resonance @ 155 G

elastic scattering

inelastic *two -body* scattering

- only narrow (i.e. closed-channel dominated) resonances
- best choice (for us): **155G resonance in 1-3 spin channel**
- reasonable universal range: ~10mG

for typical experimental conditions:

- lifetime on resonance: \sim 10ms
- strongly interacting regime $\pm 15 \text{mG}$

OK for experiments in strongly interacting regime

looking back into 2002

Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms

K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas*

Science **298**, 2179 (2002)

hydrodynamic expansion first signature of strongly interacting regime

our experimental situation

ultracold.atoms

⁶Li: N = 7.5 x 10⁴ E^F = 1.1 µK **⁴⁰K**: N = 1.5 x 10⁴ E^F = 500 nK **T = 300 nK**

Li Fermi energy our leading energy scale!

$$
1/k_F^{Li} \approx 3600 \ a_0
$$

preparation of the strongly interacting mixture

need precise tuning with minimum losses

• start in weakly interacting spin channel (Li 1 - K 2)

ultracold.atoms

- precisely set magnetic field
- immediate rf-transfer (K 2 -> K 3)

strongly interacting mixture with density distributions defined by non-interacting case

• do experiments without any further delay (e.g. immediate release frome trap)

results

inversion of aspect ratio!

results

volume occupied by ⁶Li (⁴⁰K) decreases (increases): *"hydrodynamic drag"*

ultracold.atoms

ultracold quantum gases (Fermi-Fermi mixtures)

high-energy physics (quark-gluon plasma)

"anisotropic expansion" "elliptic flow"

new analogy

"hydrodynamic drag" "collective flow"

NA44 collaboration, PRL 78, 2080 (1997)

can we image the hydrodynamic core?

ultracold.atoms

differential ⁶Li image *normal* ⁴⁰K image

hydrodynamic core

how does all this depend on the interaction strength?

$1/(k_F^{Li}|a|) > 1$ $|B-B_0| < 15 \text{ mG}$ $|a| > 3500 a_0$

condition for strong interaction

fixed TOF 4ms, variable B

bimodal distributions

bimodal distributions

interim conclusion (March 2011)

ultracold.atoms

Trenkwalder et al., PRL **106**, 115304 (2011)

first observation of a strongly interacting Fermi-Fermi mixture

high level of interaction control demonstrated

experiments on short timescale (few ms) possible without suffering from losses

... from single-species fermion experiments

interaction energy measurement

ultracold.atoms

analyzing the expanding clouds (quite involved...)

what kind of state is produced by the rapid rf quench?

more inspiration...

ultracold.atoms

... from single-species fermion experiments

our experimental situation (rf spectroscopy)

ultracold.atoms

Li Fermi energy our leading energy scale!

$$
1/k_F^{Li} \approx 3000 \ a_0
$$

probing the system by rf spectroscopy

four ways of doing rf spectroscopy

four ways of doing rf spectroscopy

how we do rf spectroscopy

ultracold.atoms

scattering state

molecular state

scattering state

W. Continuing

 $\sqrt{2}$

m↓/(m↑+m↓) ×E_F↑

u.atoms

role of the FR character? broad vs. narrow

polaron?

?

? ? ?

?

polaron?

repulsive state

Mix continuing

mean field

attractive state mean field

```
m↓/(m↑+m↓) ×E<sub>F</sub>↑
```
theory: spectral function

ultracold.atoms

what we may expect for reverse rf spectroscopy

Pietro Massignan ICFO, Spain

Georg Bruun U Aarhus, Denmark

and what does the experiment tell us?

ultracold.atoms

 π pulse **(1 ms)**

ultracold.atoms

 π pulse **(1 ms)**

theory by Massignan and Bruun: **attractive/ repulsive branch**

molecular state

ultracold.atoms

pulse 25x power (1 ms)

theory by Massignan and Bruun: **attractive/ repulsive branch**

molecular state

ultracold.atoms

pulse 25x power (1 ms)

theory by Massignan and Bruun: **attractive/ repulsive branch**

molecular state

magnetic detuning -20mG, $1/k_Fa = 1.1$

magnetic detuning -20mG, $1/k_Fa = 1.1$

survival of the attractive polaron?

ultracold.atoms

pi pulses and beyond

ultracold.atoms

pi pulses and beyond

ultracold.atoms

pi pulses and beyond

ultracold.atoms

coherent rf spectrocopy on many-body state

mapping out Rabi frequency and damping rate vs. B and δf

what can we learn from that?

polaron: sharp peak in spectrum -> Rabi oscillation continuum: no Rabi oscillation

coherence times? relaxation effects ?

d.atoms

role of the FR character? broad vs. narrow

polaron?

?

? ? ?

?

polaron?

repulsive state

Mix continuing

mean field

attractive state mean field

```
m↓/(m↑+m↓) ×E<sub>F</sub>↑
```
ultracold.atoms "standard" rf spectroscopy on attractive branch

+15mG (1/ $k_F a \approx -0.8$)

on resonance

 -15 mG (1/k_Fa \approx -0.8)

ultracold.atoms "standard" rf spectroscopy on attractive branch

same data,

... but now relative to polaronic ground state (Massignan-Bruun theory)

role of the FR character? broad vs. narrow

polaron?

?

? ? ?

?

polaron?

repulsive state

Mix continuing

mean field

attractive state mean field

```
m↓/(m↑+m↓) ×E<sub>F</sub>↑
```
d.atoms

probing the repulsive polaron

ramp: 100mG in 20ms magn. detuning: -12mG (1/ $k_F a \approx +0.6$) rf excitation: 0.3ms pi-pulse

let us conclude!

probing the spectral function

probing the spectral function \mathcal{L} **strongly interacting Fermi-Fermi mixture**

created hydrodynamic expansion observed

lots of fun...

rf spectroscopy in polaronic regime

(very rich!) many more things to come: rf and Bragg spectroscopy, lattices, low-D, mixed-D...

Innsbruck Fermi-Fermi team

ultracold.atoms

orign

Schreck

Devang Naik Andrei Gerhard Frederik Sidorov Hendl Spiegelhalder

> Michael Jag Andreas Trenkwalder Jag Chris

Matteo **Zaccant** Kohstall

Rudi

Grimm

thank you for your attention !

FWF

universität
Innsbruck

Der Wissenschaftsfonds.

Foundations and Applications of **Quantum Science**

European Network

EuroQUAM

Collaborative Research Project

FerMix