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the 6Li-40K mixture 

6Li 

40K 

more candidates: 

non-alkali species 
3He*, 87Sr, 171Yb, 173Yb, 
53Cr, 161Dy, 163Dy, 167Er  
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two new twists 

I. mass imbalance 

novel few-body 

phenomena 

mediated interactions 

three-body states 

very rich phases 

crystalline phase 

Iskin & Sá de Melo, PRL 97, 100404 (2006) 
Petrov et al., PRL 99, 130407 (2007) 
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two new twists 

II. trap imbalance 

different resonance lines: 

species-specific optical potentials 

selective manipulation of one component ! 
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outline 

the FFF story: tunability in the mixture 

more insight: rf spectroscopy 

a first step: hydrodynamic expansion 

Trenkwalder et al., PRL 106, 115304 (2011) 

Naik et al., EPJD (2011) 
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how about tunability? 

Feshbach resonance 

review: Chin, Grimm, Julienne, Tiesinga, RMP 74, 1205 (2009) 
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Feshbach spectroscopy: a long story 

K|2> only interspecies 

Wille et al., PRL 100, 053201 (2008) 
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the end of a long story Naik et al., EPJD (2010) 

theory 

related work by Amsterdam-Eindhoven group 

Tom Hanna 

Paul Julienne 

the “optimum” resonance (for us) 
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spin channels 

FR @ 155G 

lowest 

spin state 

third-to-lowest 

spin state 

6Li 40K 

powerful tool-box of radio-frequency transitions  
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Li-K resonance @ 155 G 

abg = 63.0 a0 

B0 =  

154.707(5) G 

D = 880 mG 

universal range 

~10 mG 
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elastic scattering 

Li – K 

spin 

channels 

 

1 – 3 

1 – 2 
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inelastic two-body scattering 
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6Li-40K Feshbach conclusion 

• only narrow (i.e. closed-channel dominated) resonances 

• best choice (for us):  

                 155G resonance in 1-3 spin channel 

• reasonable universal range: ~10mG 

for typical experimental conditions: 

• lifetime on resonance: ~10ms 

• strongly interacting regime 15mG 

OK for experiments in strongly interacting regime 
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looking back into 2002 

hydrodynamic expansion 

first signature of strongly interacting regime 

Science 298, 2179 (2002)  



ultracold.atoms 

our experimental situation 

6Li:  N = 7.5 x 104 

       EF = 1.1 µK  

40K:  N = 1.5 x 104 

        EF = 500 nK   
T = 300 nK 

Li Fermi energy 

our leading energy scale! 

 

1/kF
Li  3600 a0  
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what we may expect 

in trap 

expansion 

in free space 

6Li and 40K 

hydrodynamic 

6Li alone 

ballistic 
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preparation of the strongly interacting mixture 

need precise tuning with minimum losses 

• start in weakly interacting spin channel (Li 1 - K 2) 

 

• precisely set magnetic field 

 

• immediate rf-transfer (K 2 -> K 3)  

• do experiments without any further delay 

(e.g. immediate release frome trap) 

strongly interacting mixture 
with density distributions defined by non-interacting case 
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results 

inversion of aspect ratio! 
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results 



ultracold.atoms 

hydrodynamic interactions 

6Li and 40K 

hydrodynamic 

6Li alone 

ballistic 

(collisions with 

core) 

volume occupied by 6Li (40K) decreases (increases): 

“hydrodynamic drag” 
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intriguing analogies 

“anisotropic expansion” “elliptic flow” 

ultracold quantum gases 

(Fermi-Fermi mixtures) 

high-energy physics 

(quark-gluon plasma) 

“hydrodynamic drag” “collective flow” 

new analogy 

NA44 collaboration, PRL 78, 2080 (1997) 
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can we image the hydrodynamic core? 

differential 
6Li image 

normal 
40K image 

hydrodynamic core 



ultracold.atoms 

bimodal distributions of 6Li 

on resonance ~25 mG away 
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question 

how does all this 

depend on the interaction strength? 

1/(kF
Li |a|) > 1  

condition for strong interaction 

|B-B0| < 15 mG 

|a| > 3500 a0 
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expansion vs. interaction strength 

fixed TOF 4ms, variable B 
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bimodal distributions 
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bimodal distributions 
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interim conclusion (March 2011) 

first observation of a  

strongly interacting Fermi-Fermi mixture 

high level of interaction control demonstrated 

experiments on short timescale (few ms) 

possible without suffering from losses 

Trenkwalder et al., PRL 106, 115304 (2011) 
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more inspiration... 

... from single-species fermion experiments 

ENS Paris (2003) 

interaction energy 



ultracold.atoms 

interaction energy measurement 

analyzing the expanding clouds (quite involved...) 

what kind of state is produced by the rapid rf quench? 
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collective modes 
Duke, Innsbruck (2004) 

more inspiration... 

... from single-species fermion experiments 

ENS Paris (2003) 

interaction energy 

Fermi polarons MIT (2009) 

mBEC 
Innsbruck, Boulder, 

MIT (2003) 

rf spectroscopy 
Innsbruck (2004),  Boulder, MIT 
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our experimental situation (rf spectroscopy) 

6Li:  N = 1.9 x 105 

       EF = 1.6 µK  

40K:  N = 1.2 x 104 

        EF = 400 nK   
T = 330 nK 

Li Fermi energy 

our leading energy scale! 

 

1/kF
Li  3000 a0  

polaronic regime 

heavy 40K in 

Fermi sea 

of 6Li 
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probing the system by rf spectroscopy 
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four ways of doing rf spectroscopy 

standard 
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four ways of doing rf spectroscopy 

reverse 
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how we do rf spectroscopy 

current experiments: 

rf spectroscopy on 
40K impurities 

“both ways” 
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rf spectroscopy: standard vs. reverse 

standard way 

strongly interacting 

many-body state 

non-interacting 

state 

 

ground state 

reverse way 

any available 

state 
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extended Feshbach picture 

scattering state 
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extended Feshbach picture 

scattering state 

m↓/(m↑+m↓) ×EF↑ 
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extended Feshbach picture 

repulsive state 

m↓/(m↑+m↓) ×EF↑ 

attractive state 
mean field 

mean field 

? 

? 

? ? ? 

role of the FR character? 

broad vs. narrow 
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theory: spectral function 

what we may expect for reverse rf spectroscopy 

-1.0      -0.8      -0.6      -0.4     -0.2      -0.0 

-2.0 

-1.0 

0.0 

1.0 

E/EF 

1/kFa 

Pietro Massignan 

ICFO, Spain 

Georg Bruun 

U Aarhus, Denmark 

molecule-hole (MH) 

continuum 

40/46 
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and what does the experiment tell us? 
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probing the spectral function 

p pulse 

(1 ms) 

EF/h = 

34 kHz 
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probing the spectral function 

p pulse 

(1 ms) 

theory by 

Massignan 

and Bruun: 

attractive/ 

repulsive 

branch 

 

molecular 

state 

strongly interacting 

EF/h = 

34 kHz 
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probing the spectral function 

pulse 

25x 

power 

(1 ms) 

strongly interacting 

theory by 

Massignan 

and Bruun: 

attractive/ 

repulsive 

branch 

 

molecular 

state 

EF/h = 

34 kHz 
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probing the spectral function 

pulse 

25x 

power 

(1 ms) 

strongly interacting 

theory by 

Massignan 

and Bruun: 

attractive/ 

repulsive 

branch 

 

molecular 

state 

EF/h = 

34 kHz 

a closer look onto the MH continuum 

? 

? 
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probing the MH continuum 

-60 -50 -40 -30 -20 -10 0
0

1000

2000

3000

4000

5000

6000

 

N
K

rf detuning from molecular state (kHz)

light shift corrected

EF/h = 34 kHz 

8.5 kHz 

magnetic detuning -20mG, 1/kFa = 1.1 
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probing the MH continuum 

-60 -50 -40 -30 -20 -10 0
0

1000

2000

3000

4000

5000

6000

 

N
K

rf detuning from molecular state (kHz)

light shift corrected

hot sample 

magnetic detuning -20mG, 1/kFa = 1.1 



ultracold.atoms 

survival of the attractive polaron? 

strongly interacting 

EF/h = 

34 kHz 

attractive 

polaron? 

MH continuum “eats up” polaron 

already on the BCS side of the resonance 
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coherence effects in the excitation 

strongly interacting 

EF/h = 

34 kHz 

coherence of excitation? 

role of continuum? 

pi pulses 

and 

beyond 
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coherence effects in the excitation 

strongly interacting 

EF/h = 

34 kHz 

pi pulses 

and 

beyond 

40K in 6Li 

40K only 
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coherence effects in the excitation 

strongly interacting 

EF/h = 

34 kHz 

pi pulses 

and 

beyond 

+4 kHz 

-8 kHz 

0.0 0.1 0.2 0.3
-1

0

1
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coherence effects in the excitation 

strongly interacting 

EF/h = 

34 kHz 

pi pulses 

and 

beyond 

+4 kHz 

-8 kHz 

0.0 0.1 0.2 0.3
-1

0

1
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pulse time (ms)

0 kHz 

coherent rf spectrocopy on many-body state 

mapping out Rabi frequency and damping rate vs. B and df 

what can we learn from that? 

polaron: sharp peak in spectrum -> Rabi oscillation 

continuum: no Rabi oscillation 

relaxation effects ? coherence times? 
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rf spectroscopy: standard vs. reverse 

standard way 

strongly interacting 

many-body state 

non-interacting 

state 

 

ground state 

reverse way 

any available 

state 

preparation by  

adiabatic ramp 
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extended Feshbach picture 

repulsive state 

m↓/(m↑+m↓) ×EF↑ 

attractive state 
mean field 

mean field 

? 

? 

? ? ? 

role of the FR character? 

broad vs. narrow 



ultracold.atoms 

“standard” rf spectroscopy on attractive branch 

-70 -60 -50 -40 -30 -20 -10 0 10 20
0

500

1000
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N
K

detuning from atomic resonance (kHz)

+15mG (1/kFa  -0.8) 

-15mG (1/kFa  -0.8) 

  

on resonance 
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“standard” rf spectroscopy on attractive branch 

+15mG (1/kFa  -0.8) 

-15mG (1/kFa  -0.8) 

  

on resonance 

-70 -60 -50 -40 -30 -20 -10 0 10 20
0

500

1000

1500

N
K

detuning from lower branch (kHz)

same data, 

... but now relative to polaronic ground state (Massignan-Bruun theory)  

peak stays near 

expected ground state broadening towards 

low-frequency side 

(shows high-k states) quasi-particle residue ? 

contact C ? 
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extended Feshbach picture 

repulsive state 

m↓/(m↑+m↓) ×EF↑ 

attractive state 
mean field 

mean field 

? 

? 

? ? ? 

role of the FR character? 

broad vs. narrow 
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probing the repulsive polaron 

after 

0.5 ms 

2 ms 

5 ms 

-10 0 10
-1

0

1
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rf detuning (kHz)

ramp: 100mG in 20ms          magn. detuning: -12mG (1/kFa  +0.6) 

rf excitation: 0.3ms pi-pulse 

decay with lifetime 5ms 
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decay of the repulsive polaron 

after 10 ms  

after 0.5 ms  

repulsive 

polaron 
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molecules 

repulsive polaron decays into molecules 
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probing the spectral function 

let us conclude! 
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probing the spectral function 
strongly interacting 
Fermi-Fermi mixture 

created hydrodynamic expansion 
observed 

rf spectroscopy 
in polaronic regime 

(very rich!) many more things to come: 
rf and Bragg spectroscopy, 
lattices, low-D, mixed-D... 

lots of fun... 
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thank you for your attention ! 

European Network 

EuroQUAM 
Collaborative Research Project 

FerMix 




