#### The Imbalanced Fermi Gas at Unitarity

Olga Goulko

# In collaboration with Matthew Wingate Based on Phys.Rev.A 82, 053621 (2010)

DAMTP, University of Cambridge

INT workshop, 13 May 2011

# The unitary Fermi gas

Interacting system of two-component fermions: Low-energy interactions are characterised by the scattering length *a* 



# What is interesting about unitarity?

- No length scales associated with interactions  $\Rightarrow$  universal behaviour
- Only relevant parameters: temperature and density
- High-temperature superfluidity

| neutron star               | $T_c = 10^6 \text{K}$ | $T_{c} = 10^{-5} T_{F}$ |
|----------------------------|-----------------------|-------------------------|
| high- $T_c$ superconductor | $T_{c} = 10^{2}$ K    | $T_c = 10^{-3} T_F$     |
| atomic Fermi gas           | $T_{c} = 10^{-7} K$   | $T_{c} = 10^{-1} T_{F}$ |

• Experimental data available

#### Methods to study unitarity

Strong interactions  $\Rightarrow$  No small parameter for perturbation theory

No exact theory for Fermi gas at unitarity!

What to do?

- Approximate schemes (e.g. mean-field theory) involve uncontrolled approximations
- Numerical Methods

 $\Longrightarrow$  Good results for critical temperature and other quantities

Our project: Calculating the critical temperature of the imbalanced unitary Fermi gas with the Determinant Diagrammatic Monte Carlo (DDMC) algorithm [Burovski, Prokof'ev, Svistunov, Troyer (2006)]

#### The Fermi-Hubbard model

Simplest lattice model for two-particle scattering

- Non-relativistic fermions
- Contact interaction between spin up and spin down
- On-site attraction *U* < 0 tuned to describe unitarity
- Grand canonical ensemble
- Finite 3D simple cubic lattice, periodic boundary conditions
- · Continuum limit can be taken by extrapolation to zero density

$$H = \sum_{\mathbf{k},\sigma} (\epsilon_{\mathbf{k}} - \mu_{\sigma}) c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{x}} c^{\dagger}_{\mathbf{x}\uparrow} c_{\mathbf{x}\uparrow} c^{\dagger}_{\mathbf{x}\downarrow} c_{\mathbf{x}\downarrow},$$

where  $\epsilon_{\mathbf{k}} = \frac{1}{m} \sum_{j=1}^{3} (1 - \cos k_j)$  is the discrete FT of  $\frac{-\nabla^2}{2m}$ .

#### Finite temperature formalism

Grand canonical partition function in imaginary time interaction picture:  $Z = \text{Tr}e^{-\beta H}$ :



#### Sign problem!

The diagrams of each order can be written as the product of two matrix determinants [Rubtsov, Savkin, Lichtenstein (2005)]

$$Z = \sum_{
ho, S_
ho} (-U)^
ho \det \mathbf{A}^{\uparrow}(S_
ho) \det \mathbf{A}^{\downarrow}(S_
ho),$$

where  $S_p$  is the vertex configuration and the matrix entries are free (finite temperature) propagators

#### Order parameter of the phase transition

Anomalous correlations in the superfluid phase:

 $\Rightarrow$  Introduce pair annihilation/creation operators P and P<sup>†</sup>:

$$P(\mathbf{x}, \tau) = c_{\mathbf{x}\uparrow}(\tau)c_{\mathbf{x}\downarrow}(\tau)$$
 and  $P^{\dagger}(\mathbf{x}', \tau') = c^{\dagger}_{\mathbf{x}'\uparrow}(\tau')c^{\dagger}_{\mathbf{x}'\downarrow}(\tau')$ 

At the critical point the correlation function

$$G_{2}(\mathbf{x}\tau;\mathbf{x}'\tau') = \left\langle \mathbf{T}_{\tau} P(\mathbf{x},\tau) P^{\dagger}(\mathbf{x}',\tau') \right\rangle = \frac{1}{Z} \operatorname{Tr} \mathbf{T}_{\tau} P(\mathbf{x},\tau) P^{\dagger}(\mathbf{x}',\tau') e^{-\beta H}$$

is proportional to  $|\mathbf{x} - \mathbf{x}'|^{-(1+\eta)}$  as  $|\mathbf{x} - \mathbf{x}'| \to \infty$ (in 3 spatial dimensions, where  $\eta \approx 0.038$  for U(1) universality class)

### Order parameter of the phase transition

 $\Rightarrow$  the rescaled integrated correlation function

$$R(L, T) = L^{1+\eta} \overline{G_2(\mathbf{x}\tau; \mathbf{x}'\tau')}$$

becomes independent of lattice size at the critical point

Finite-size corrections:

$$R(L, T) = \underbrace{(f_0 + f_1(T - T_c)L^{1/\nu_{\xi}} + \ldots)}_{\text{universal scaling function}} \underbrace{(1 + cL^{-\omega} + \ldots)}_{\text{finite-size scaling}}$$

- Critical exponents for the U(1) universality class:  $\nu_{\xi} \approx 0.67$  and  $\omega \approx 0.8$
- Non-universal constants to be determined:  $T_c$ ,  $f_0$ ,  $f_1$ , c (to first order)

#### Order parameter of the phase transition

Crossing of R(L, T) curves for 2 lattice sizes  $L_i$ ,  $L_j$ :

$$R(L_i, T_{ij}) = R(L_j, T_{ij}) \Rightarrow T_{ij} - T_c = \text{const.} \cdot g(L_i, L_j)$$

with

$$g(L_i, L_j) = \frac{(L_j/L_i)^{\omega} - 1}{L_j^{\frac{1}{\nu_{\xi}} + \omega} \left(1 - (L_i/L_j)^{\frac{1}{\nu_{\xi}}}\right) + \underbrace{cL_j^{\frac{1}{\nu_{\xi}}} \left(1 - (L_i/L_j)^{\frac{1}{\nu_{\xi}} - \omega}\right)}_{\text{neglect?}}$$

c can take values of  $O(1) \Rightarrow$  perform non-linear fit to 4 parameters instead

# Order parameter of the phase transition Example: fit of the rescaled integrated correlator R(L, T)



(data taken at 4 different temperatures and 4 different lattice sizes)

# Diagrammatic Monte Carlo

Burovski et al. (2006):

- sampling via a Monte Carlo Markov chain process
- the configuration space is extended  $\rightarrow$  worm vertices



- physical picture: at low densities multi-ladder diagrams dominate
- updates designed to favour prolonging existing vertex chains

#### The worm updates

Updates of the regular 4-point vertices: **adding/removing a 4-point vertex** (changes the diagram order)

- Diagonal version: add or remove a random vertex
- Alternative using worm: move the P(x, τ) vertex to another position and insert a 4-point vertex at its old position.
   ⇒ choose new coordinates of P very close to its initial coordinates

 $\Rightarrow$  the removal update always attempts to remove the nearest neighbour of P



# Autocorrelations

The original worm algorithm achieved high acceptance ratios, but at the cost of strongly autocorrelated results:





#### Alternative updates

Alternative set of updates: both weak autocorrelations and high acceptance rates [Goulko and Wingate (2009)].

- Choose a random 4-point vertex from the configuration (will act as a worm for this step).
- Addition: add another 4-point vertex on the same lattice site and in some time interval around the worm.
- Removal: remove the nearest neighbour of the worm vertex

This setup still prolongs existing vertex chains, but autocorrelations are reduced since the worm changes with every update.

### Alternative updates



Comparison between diagonal setup (red circles) and alternative worm setup (blue squares) at low filling factor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# The balanced Fermi gas



An interacting system with equal number of spin up and spin down fermions  $(\mu_{\uparrow}=\mu_{\downarrow})$ 

# The imbalanced Fermi gas



Interactions are suppressed in presence of an imbalance  $(\mu_{\uparrow} \neq \mu_{\downarrow})$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### The imbalanced Fermi gas

Thermal probability distribution:

$$ho(S_{
ho})=rac{1}{Z}(-U)^{
ho}\, ext{det}\, \mathbf{A}^{\uparrow}(S_{
ho})\, ext{det}\, \mathbf{A}^{\downarrow}(S_{
ho})$$

 ${\rm Sign \ problem:}\ \mu_{\uparrow} \neq \mu_{\downarrow} \Rightarrow \det {\bf A}^{\uparrow} \det {\bf A}^{\downarrow} \neq |\det {\bf A}|^2$ 

Sign quenched method: write  $\rho(S_p) = |\rho(S_p)| \operatorname{sign}(S_p)$  and use  $|\rho(S_p)|$  as the new probability distribution

$$\langle X \rangle_{\rho} = \frac{\sum X(S_{\rho})\rho(S_{\rho})}{\sum \rho(S_{\rho})} = \frac{\sum X(S_{\rho})|\rho(S_{\rho})|\text{sign}(S_{\rho})}{\sum |\rho(S_{\rho})|\text{sign}(S_{\rho})} = \frac{\langle X \text{sign} \rangle_{|\rho|}}{\langle \text{sign} \rangle_{|\rho|}}$$

Problems if  $\langle sign \rangle \approx 0$ 

But for the unitary Fermi gas  $\langle {
m sign} 
angle_{|
ho|} pprox 1$  for a range of  $\Delta \mu$ 

#### The imbalanced Fermi gas

Schematic plot of the sign near the critical point:



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

#### Results

Relationship between  $\Delta \mu / \varepsilon_F = |\mu_{\uparrow} - \mu_{\downarrow}| / \varepsilon_F$  and  $\delta \nu / \nu = \frac{|\nu_{\uparrow} - \nu_{\downarrow}|}{\nu_{\uparrow} + \nu_{\downarrow}}$ 



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

The critical temperature using only balanced data:



< ∃→

э

(日)、

 $\nu \rightarrow 0$  corresponds to the continuum limit

#### Surface fits for the imbalanced gas

Surface fit of a physical observable X as a function of filling factor  $\nu^{1/3}$  and imbalance  $h = \Delta \mu / \varepsilon_F$ :

- At fixed imbalance X is a linear function of  $\nu^{1/3}$ , with slope  $\alpha^{(X)}(h)$ .
- X(h) and a<sup>(X)</sup>(h) viewed as functions h can be Taylor expanded.
- Due to symmetry in h all odd powers in the expansion of X(h) and a<sup>(X)</sup>(h) have to vanish.

Hence the fitted function takes the form

$$X(\nu, h) = X(h) + \alpha^{(X)}(h)\nu^{1/3}$$

We will expand the functions X(h) and  $\alpha^{(X)}(h)$  to 2nd order in h.

Surface fit of the critical temperature versus  $\nu^{1/3}$  and *h*:



Data is consistent with  $T_c(\nu = 0) = 0.171(5)\varepsilon_F$ , independent of *h*.

Lower bounds for the deviation of  $T_c$  from the balanced limit:



lower bound:  $T_c(h) - T_c(0) > -0.5\varepsilon_F h^2$ , with additional assumption:  $T_c(h) - T_c(0) > -0.04\varepsilon_F h^2$ 

Comparison with other numerical studies and experiment:

Crossings

| 8-                                                                |           |
|-------------------------------------------------------------------|-----------|
| <ul> <li>Burovski, Prokof'ev, Svistunov, Troyer (DDMC)</li> </ul> | 0.152(7)  |
| <ul> <li>Burovski, Kozik, Prokof'ev, Svistunov, Troyer</li> </ul> | 0.152(9)  |
| <ul> <li>Bulgac, Drut, Magierski</li> </ul>                       | 0.15(1)   |
| • Full fit                                                        |           |
| • Abe, Seki                                                       | 0.189(12) |
| <ul> <li>Goulko, Wingate (DDMC)</li> </ul>                        | 0.171(5)  |
| Experiment                                                        |           |
| <ul> <li>Nascimbene, Navon, Jiang, Chevy, Salomon</li> </ul>      | 0.157(15) |
| <ul> <li>Horikoshi, Nakajima, Ueda, Mukaiyama</li> </ul>          | 0.17(1)   |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Results: the chemical potential

The average chem. pot. projected onto the  $(\nu^{1/3} - \mu)$  plane:



 $\nu \rightarrow 0$  corresponds to the continuum limit

コト 《聞 と 《臣 と 《臣 と 《句 くぐ)

#### Results: the energy per particle

The energy per particle using only balanced data:



 $\nu \to 0$  corresponds to the continuum limit;  $E_{FG} = (3/5)N\varepsilon_F$ 

#### Results: the energy per particle Surface fit of the energy per particle versus $\nu^{1/3}$ and h:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

#### Results: the contact density

The contact can be interpreted as a measure for the local pair density [Tan (2008), Braaten (2010)].

Definition contact [Werner and Castin (2010)]:

 $C = m^2 g_0 E_{\text{int}},$ 

where  $g_0$  is the physical coupling constant.

The contact density is C = C/V and has units  $\varepsilon_F^2$ .

This was the first numerical calculation of the contact density at finite temperature [Goulko and Wingate, arXiv:1011.0312]

#### Results: the contact density

The contact density using only balanced data:



(日)、

э

 $\nu \rightarrow 0$  corresponds to the continuum limit

#### Results: the contact density

Surface fit of the contact density versus  $\nu^{1/3}$  and *h*:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

**Problem**: fixing the temperature for  $T \neq T_c$ 

Setting the scale: set lattice spacing b to be independent of temperature  $\Rightarrow b = b(\mu)$ 

$$\Rightarrow \frac{\nu(\mu, T)}{\nu(\mu, T_c)} = \frac{n(T)}{n(T_c)} \left(\frac{b(\mu, T)}{b(\mu, T_c)}\right)^3 = \frac{n(T)}{n(T_c)}$$

If the fix the lattice temperature ratio  $T(\mu)/T_c(\mu)$  we will move towards the continuum limit along a line of fixed temperature.

Works for  $T/T_c \leq 4$  for sufficiently small  $\mu$ :



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Preliminary results: temperature dependence of the chemical potential



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Preliminary results: temperature dependence of the contact



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

# Conclusions

- Lattice Field Theory is a useful tool for studying strongly interacting systems in condensed matter physics
- The DDMC algorithm can be applied to study the phase transition of the unitary Fermi gas
- Imbalanced case with the sign quenched method
- Results for  $T_c/\varepsilon_F$ ,  $\mu/\varepsilon_F$ ,  $E/E_{FG}$  and  $C/\varepsilon_F^2$  for equal and unequal number of fermions in the two spin components

• Temperatures beyond T<sub>c</sub> accessible

# Thank you!