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The unitary Fermi gas

Interacting system of two-component fermions:
Low-energy interactions are characterised by the scattering length a

∞ −∞0

1
a

BEC regime
strongly bound

(bosonic) molecules
of two fermions

UNITARITY
strongly

interacting
fermions

BCS regime
pairs of fermions
weakly bound in

momentum space



What is interesting about unitarity?

• System is dilute (range of potential � interparticle distance)
and strongly interacting (interparticle distance � scattering
length) at the same time

• No length scales associated with interactions ⇒ universal
behaviour

• Only relevant parameters: temperature and density

• High-temperature superfluidity

neutron star Tc = 106K Tc = 10−5TF

high-Tc superconductor Tc = 102K Tc = 10−3TF

atomic Fermi gas Tc = 10−7K Tc = 10−1TF

• Experimental data available



Methods to study unitarity

Strong interactions ⇒ No small parameter for perturbation theory

No exact theory for Fermi gas at unitarity!

What to do?

• Approximate schemes (e.g. mean-field theory) involve
uncontrolled approximations

• Numerical Methods
=⇒ Good results for critical temperature and other quantities

Our project: Calculating the critical temperature of the imbalanced
unitary Fermi gas with the Determinant Diagrammatic Monte Carlo
(DDMC) algorithm [Burovski, Prokof’ev, Svistunov, Troyer (2006)]



The Fermi-Hubbard model

Simplest lattice model for two-particle scattering

• Non-relativistic fermions

• Contact interaction between spin up and spin down

• On-site attraction U < 0 tuned to describe unitarity

• Grand canonical ensemble

• Finite 3D simple cubic lattice, periodic boundary conditions

• Continuum limit can be taken by extrapolation to zero density

H =
∑
k,σ

(εk − µσ)c†kσckσ + U
∑
x

c†x↑cx↑c
†
x↓cx↓,

where εk = 1
m

∑3
j=1(1− cos kj) is the discrete FT of −∇

2

2m .



Finite temperature formalism

Grand canonical partition function in imaginary time interaction
picture: Z = Tre−βH :

Z = 1 + + +− − ± . . .

Sign problem!

The diagrams of each order can be written as the product of two
matrix determinants [Rubtsov, Savkin, Lichtenstein (2005)]

Z =
∑
p,Sp

(−U)p detA↑(Sp) detA↓(Sp),

where Sp is the vertex configuration and the matrix entries are free
(finite temperature) propagators



Order parameter of the phase transition

Anomalous correlations in the superfluid phase:

⇒ Introduce pair annihilation/creation operators P and P†:

P(x, τ) = cx↑(τ)cx↓(τ) and P†(x′, τ ′) = c†x′↑(τ
′)c†x′↓(τ

′)

At the critical point the correlation function

G2(xτ ; x′τ ′) =
〈
TτP(x, τ)P†(x′, τ ′)

〉
=

1

Z
TrTτP(x, τ)P†(x′, τ ′)e−βH

is proportional to |x− x′|−(1+η) as |x− x′| → ∞
(in 3 spatial dimensions, where η ≈ 0.038 for U(1) universality
class)



Order parameter of the phase transition

⇒ the rescaled integrated correlation function

R(L,T ) = L1+ηG2(xτ ; x′τ ′)

becomes independent of lattice size at the critical point

Finite-size corrections:

R(L,T ) = (f0 + f1(T − Tc)L1/νξ + . . .)︸ ︷︷ ︸
universal scaling function

(1 + cL−ω + . . .)︸ ︷︷ ︸
finite-size scaling

• Critical exponents for the U(1) universality class:
νξ ≈ 0.67 and ω ≈ 0.8

• Non-universal constants to be determined:
Tc , f0, f1, c (to first order)



Order parameter of the phase transition

Crossing of R(L,T ) curves for 2 lattice sizes Li , Lj :

R(Li ,Tij) = R(Lj ,Tij)⇒ Tij − Tc = const. · g(Li , Lj)

with

g(Li , Lj) =
(Lj/Li )

ω − 1

L
1
νξ

+ω

j

(
1− (Li/Lj)

1
νξ

)
+ cL

1
νξ

j

(
1− (Li/Lj)

1
νξ
−ω
)

︸ ︷︷ ︸
neglect?

c can take values of O(1)⇒ perform non-linear fit to 4 parameters
instead



Order parameter of the phase transition

Example: fit of the rescaled integrated correlator R(L,T )
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Diagrammatic Monte Carlo

Burovski et al. (2006):

• sampling via a Monte Carlo Markov chain process

• the configuration space is extended → worm vertices

• physical picture: at low
densities multi-ladder diagrams
dominate

• updates designed to favour
prolonging existing vertex
chains



The worm updates

Updates of the regular 4-point vertices: adding/removing a
4-point vertex (changes the diagram order)

• Diagonal version: add or remove a random vertex

• Alternative using worm: move the P(x, τ) vertex to another
position and insert a 4-point vertex at its old position.
⇒ choose new coordinates of P very close to its initial
coordinates
⇒ the removal update always attempts to remove the nearest
neighbour of P



Autocorrelations
The original worm algorithm achieved high acceptance ratios, but
at the cost of strongly autocorrelated results:
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Alternative updates

Alternative set of updates: both weak autocorrelations and high
acceptance rates [Goulko and Wingate (2009)].

• Choose a random 4-point vertex from the configuration (will
act as a worm for this step).

• Addition: add another 4-point vertex on the same lattice site
and in some time interval around the worm.

• Removal: remove the nearest neighbour of the worm vertex

This setup still prolongs existing vertex chains, but autocorrelations
are reduced since the worm changes with every update.



Alternative updates
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The balanced Fermi gas

An interacting system with equal number of spin up and spin down
fermions (µ↑ = µ↓)



The imbalanced Fermi gas

Interactions are suppressed in presence of an imbalance (µ↑ 6= µ↓)



The imbalanced Fermi gas

Thermal probability distribution:

ρ(Sp) =
1

Z
(−U)p detA↑(Sp) detA↓(Sp)

Sign problem: µ↑ 6= µ↓ ⇒ detA↑ detA↓ 6= | detA|2

Sign quenched method: write ρ(Sp) = |ρ(Sp)|sign(Sp) and use
|ρ(Sp)| as the new probability distribution

〈X 〉ρ =

∑
X (Sp)ρ(Sp)∑

ρ(Sp)
=

∑
X (Sp)|ρ(Sp)|sign(Sp)∑ |ρ(Sp)|sign(Sp)

=
〈X sign〉|ρ|
〈sign〉|ρ|

Problems if 〈sign〉 ≈ 0

But for the unitary Fermi gas 〈sign〉|ρ| ≈ 1 for a range of ∆µ



The imbalanced Fermi gas

Schematic plot of the sign near the critical point:
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Results

Relationship between ∆µ/εF = |µ↑ − µ↓|/εF and δν/ν =
|ν↑−ν↓|
ν↑+ν↓
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Results: the critical temperature

The critical temperature using only balanced data:
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Surface fits for the imbalanced gas

Surface fit of a physical observable X as a function of filling factor
ν1/3 and imbalance h = ∆µ/εF :

• At fixed imbalance X is a linear function of ν1/3, with slope
α(X )(h).

• X (h) and α(X )(h) viewed as functions h can be Taylor
expanded.

• Due to symmetry in h all odd powers in the expansion of X (h)
and α(X )(h) have to vanish.

Hence the fitted function takes the form

X (ν, h) = X (h) + α(X )(h)ν1/3

We will expand the functions X (h) and α(X )(h) to 2nd order in h.



Results: the critical temperature

Surface fit of the critical temperature versus ν1/3 and h:
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Results: the critical temperature

Lower bounds for the deviation of Tc from the balanced limit:
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Results: the critical temperature

Comparison with other numerical studies and experiment:

• Crossings
• Burovski, Prokof’ev, Svistunov, Troyer (DDMC) 0.152(7)
• Burovski, Kozik, Prokof’ev, Svistunov, Troyer 0.152(9)
• Bulgac, Drut, Magierski 0.15(1)

• Full fit
• Abe, Seki 0.189(12)
• Goulko, Wingate (DDMC) 0.171(5)

• Experiment
• Nascimbene, Navon, Jiang, Chevy, Salomon 0.157(15)
• Horikoshi, Nakajima, Ueda, Mukaiyama 0.17(1)



Results: the chemical potential

The average chem. pot. projected onto the (ν1/3 − µ) plane:
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Results: the energy per particle

The energy per particle using only balanced data:
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Results: the energy per particle
Surface fit of the energy per particle versus ν1/3 and h:
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Results: the contact density

The contact can be interpreted as a measure for the local pair
density [Tan (2008), Braaten (2010)].

Definition contact [Werner and Castin (2010)]:

C = m2g0Eint,

where g0 is the physical coupling constant.

The contact density is C = C/V and has units ε2F .

This was the first numerical calculation of the contact density at
finite temperature [Goulko and Wingate, arXiv:1011.0312]



Results: the contact density

The contact density using only balanced data:
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Results: the contact density
Surface fit of the contact density versus ν1/3 and h:
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Outlook: temperatures beyond Tc

Problem: fixing the temperature for T 6= Tc

Setting the scale: set lattice spacing b to be independent of
temperature ⇒ b = b(µ)

⇒ ν(µ,T )

ν(µ,Tc)
=

n(T )

n(Tc)

(
b(µ,T )

b(µ,Tc)

)3

=
n(T )

n(Tc)

If the fix the lattice temperature ratio T (µ)/Tc(µ) we will move
towards the continuum limit along a line of fixed temperature.



Outlook: temperatures beyond Tc

Works for T/Tc ≤ 4 for sufficiently small µ:

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

ν
(µ

,T
)/
ν
(µ

,T
c
)

T/Tc

µ=0.4

µ=0.5

µ=0.7



Outlook: temperatures beyond Tc

Preliminary results: temperature dependence of the chemical
potential
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Outlook: temperatures beyond Tc

Preliminary results: temperature dependence of the contact
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Conclusions

• Lattice Field Theory is a useful tool for studying strongly
interacting systems in condensed matter physics

• The DDMC algorithm can be applied to study the phase
transition of the unitary Fermi gas

• Imbalanced case with the sign quenched method

• Results for Tc/εF , µ/εF , E/EFG and C/ε2F for equal and
unequal number of fermions in the two spin components

• Temperatures beyond Tc accessible



Thank you!


