

Faddeev Random Phase Approximation (FRPA) Application to Molecules

Matthias Degroote

Center for Molecular Modeling (CMM) Ghent University

INT 2011 Spring Program Fermions from Cold Atoms to Neutron Stars: Benchmarking the Many-Body Problem

(日) (四) (三) (三) (三)

Outline

Introduction

2 Model

- ADC(3)
- From TDA to RPA
- FRPA
- Faddeev equations

3 Results

It is a Green's function method that uses Faddeev equations to couple Random Phase Approximation (RPA) interactions in a consistent way and to sum them to an infinite order

Situating the problem

Hamiltonian

Within the Born-Oppenheimer approximation

$$\hat{H} = \hat{T} + \hat{U}_{ext} + \hat{V}_{ee}$$

- only 2-body interactions
- interactions are known
 - \hat{T} kinetic energy
 - \hat{U}_{ext} central potential due to nuclei
 - \hat{V}_{ee} Coulomb-repulsion between electrons

Situating the solution

Green's functions

In the time domain

$$\mathcal{G}_{lpha,eta}(t-t') = rac{-i}{\hbar} \left\langle \Psi_0^{m{N}} \left| \mathcal{T} \left(\pmb{a}_lpha(t) \pmb{a}_eta^\dagger(t')
ight) \right| \Psi_0^{m{N}}
ight
angle$$

• propagation of single partice states from time t to t' Lehmann-representation

$$G_{\alpha,\beta}(E) = \sum_{n} \frac{\left\langle \Psi_{0}^{N} | a_{\alpha} | \Psi_{n}^{N+1} \right\rangle \left\langle \Psi_{n}^{N+1} | a_{\beta}^{\dagger} | \Psi_{0}^{N} \right\rangle}{E - (E_{n}^{N+1} - E_{0}^{N}) + i\eta}$$
$$\sum_{m} \frac{\left\langle \Psi_{0}^{N} | a_{\beta}^{\dagger} | \Psi_{m}^{N-1} \right\rangle \left\langle \Psi_{m}^{N-1} | a_{\alpha} | \Psi_{0}^{N} \right\rangle}{E - (E_{0}^{N} - E_{m}^{N-1}) - i\eta}$$

- transition amplitudes
- excitation energies

Matthias Degroote (Ghent University)

FRPA: Application to Molecule

Perturbation expansion

Dyson equation

 $G(E) = G_0(E) + G_0(E)\Sigma^*(E)G(E)$

Irreducible Self-Energy and higher-order vertex functions

 $\Sigma^*(E) = \Sigma_{HF} + M(E)$

4-point function

$$\sum^{\bullet} = \bullet - - \bigcirc + \boxed{\Gamma^{4pt}}$$

Examples: GW, Bold Diagrammatical Monte Carlo, T-matrix

• 6-point function

$$\Sigma^* = \bullet - \bullet + \frac{1}{4}$$

Examples: ADC(3), FRPA, all the previous examples

Matthias Degroote (Ghent University)

FRPA: Application to Molecule

Algebraic diagrammatic construction

Algebraic diagrammatic construction

Schirmer et al. Phys. Rev. A 28 (1983) $M(E) = U^{\dagger} \frac{1}{E-K-C+in}U$

- only depends on 1 energy
- expand *U* and *C* in orders $U = U^{(1)} + U^{(2)} + \dots$ $C = C^{(1)} + C^{(2)} + \dots$
- exact up to certain order
- formulated as an expansion in Coulomb matrix elements
- coupling to 1p2h, 2p3h, ...

Algebraic diagrammatic construction

- Indirect coupling of 2p1h and 2h1p
- matrix size grows every 2 orders

ADC(3)

Third order ADC

- $\bullet\,$ coupling between single particle states and 2p1h/2h1p
- consisent up to third order
- compromise between speed and precision
- good ground state energies and ionization energies

Interpretation

- equation of motion (EOM) $Q_{p_1p_2h}^n = a_{p_1}^{\dagger}a_{p_2}^{\dagger}a_h$
- diagrammatic
 - infinite resummation
 - interactions between two of the three lines
 - only 3 states at any energy

TDA and RPA

- ADC(3) is equivalent to exchange of Tamm Dancoff (TDA) phonons
- not clear how!

TDA

- approximation for ph and 2p propagator
- no mixture between forward and backward propagation

RPA

- dynamically screens interaction
- used in condensed matter physics
- links forward and backward propagating amplitudes

$$\left(\begin{array}{cc} A & B \\ B^* & C \end{array}\right) \left(\begin{array}{c} \mathcal{X} \\ \mathcal{Y} \end{array}\right) = sgn(\epsilon) \epsilon \left(\begin{array}{c} \mathcal{X} \\ \mathcal{Y} \end{array}\right)$$

Advantages of RPA over TDA

Random Phase Approximation

- improves over TDA by including mixture between positive and negative energy excitations
- example: plasmon pole in polarization propagator

Diagrammatic content of FRPA

Matthias Degroote (Ghent University)

FRPA: Application to Molecule

12 / 23

Different approach

Difficulties

- no equivalent nth order expansion in Coulomb elements
- not just replacing interactions by screened RPA interactions

Introduction of Faddeev equations

Splitting up the propagator

- from 3-body problem
- but without three-body forces

•
$$R(E) = R_{free}(E) + \sum_{i=1..3} R^{(i)}(E)$$

Faddeev equations

Matrix equations

- Lehmann-representation for $R^{(i)}$
- amplitudes and poles are found from eigenvalue-equation

• reduces to ADC(3) or FTDA when $H^{(i)} = 0$

Spurious solutions

• 3 times matrix dimension of 2p1h-space

$$\Rightarrow 2/3$$
 are spurious
 $\sum_{i=1..3} R^{(i)}(E) = 0$

FRPA recipe

FRPA properties

- infinite summation of diagrams through self-consistent equation
- conserving in Baym-Kadanoff manner
- ph- and pp-channels treated equivalently
- non-hermitian eigenvalue equation for 2p1h/2h1p amplitudes and energies
 - \Rightarrow complex eigenvalues are possible
- iterative treatment of static self-energy

$$F = \begin{array}{ccc} p/h & 2p1h & 2h1p \\ \rho/h & \tilde{U} & \tilde{U} \\ 2p1h & \tilde{U}^{\dagger} & \epsilon^{Fd} & 0 \\ \tilde{U}^{\dagger} & 0 & \epsilon^{Fd} \end{array} \right)$$

• same U as in ADC(3)

Calculations

Ground state properties

Molecule		FTDA	FRPA	CCSD(T)	FCI	Expt.	=
H ₂							-
	E ₀	-1.161	-1.161	-1.164	-1.164	-1.175	
	r_{H-H}	0.757	0.757	0.761		0.741	
	I	16.03	16.03	16.12		16.08	
HF							
	E ₀	-100.224	-100.228	-100.228	-100.231	-	
	r_{H-F}	0.916	0.913	0.920		0.917	
		15.70	15.54	15.42		16.12	
HCl							
	E ₀	-460.256	-460.255	-460.254		-	
	rH-CI	1.297	1.293	1.290		1.275	
	1	12.24	12.24	12.26		-	
$_{\rm BF}$							
	E ₀	-124.365	-124.368	-124.380		-	
	r_{B-F}	1.284	1.285	1.295		1.267	
	·	10.75	10.94	11.01		-	
BeH ₂							
	E_0	-15.831	-15.832	-15.835	-15.836	-	
	r _{Be} _H	1.337	1.337	1.339		1.340	
	1	11.78	11.76	11.89		-	
H_2O							
-	E_0	-76.240	-76.236	-76.241		-	
	rH_O	0.964	0.962	0.967		0.958	
	Λ_{0-H-0}	102	102	102		104	
	5 // -0	12.15	12.21	11.94		12.61	
						49.00	<u> 11111</u>
						INHAI	UNIVERSI
						CENTER INF RECKLORING ADDRESS	UEN

calculated in cc-pVDZ

Matthias Degroote (Ghent University)

18 / 23

Ground state properties

Molecule		FTDA	FRPA	CCSD(T)	FCI	Expt.
N ₂						
	E ₀	-109.258	-109.272	-109.276		-
	r_{N-N}	1.104	1.106	1.119		1.098
	I	15.37	14.80	15.05		15.58
CO						
	E ₀	-113.037	-113.048	-113.055		-
	r_{C-O}	1.130	1.123	1.145		1.128
	1	13.69	14.44	13.64		14.01
CO_2						
	E ₀	-188.139	-188.134	-188.148		-
	r_{C-O}	1.162	1.162	1.175		1.162
	I.	13.25	13.42	13.26		13.78
C_2H_2						
	E ₀	-77.102	-77.093	-77.111		-
	r_{C-C}	1.298	1.298	1.232		1.203
	r_{C-H}	1.083	1.080	1.081		1.063
	1	11.26	11.14	11.08		11.49

calculated in cc-pVDZ

Vertical ionization energies

		HF	FTDA	FRPA	Expt.
Molecule	Level				
HF					
	1π	17.17	16.46	16.35	16.05
	3σ	20.98	20.33	20.24	20.0
CO					
	5σ	15.10	13.88	13.69	14.01
	1π	17.44	16.93	16.84	16.91
	4σ	21.99	20.11	19.59	19.72
N_2					
-	$3\sigma_{\sigma}$	17.25	15.65	15.18	15.60
	$1\pi_{\mu}$	16.73	16.82	17.14	16.98
	$2\sigma_{\mu}$	21.25	18.99	17.90	18.78
H_2O	-				
-	$1b_1$	13.86	12.83	12.67	12.62
	3a1	15.93	15.11	14.98	14.74
	$1b_2$	19.56	19.19	19.13	18.51
	$\bar{\Delta}$ (eV)	1.26 (1.14)	0.27 (0.28)	0.31 (0.26)	
	Δ_{max} (eV)	2.47 (2.27)	0.68 (0.68)	0.88 (0.62)	

calculated in aug-cc-pVDZ at experimental geometry

Problems in the dissociation limit

RPA instability H_2 in minimal basis set

essentially the same as 2-site Fermi-Hubbard at half-filling

- ground state is combination of Slater-determinants
- ph excitation lower in energy
- Fermi-Hubbard
 - TDA linear behavior \Rightarrow becomes negative
 - RPA square root behavior \Rightarrow becomes complex

Matthias Degroote (Ghent University)

FRPA: Application to Molecul

Conclusion

Dissociation limit not feasible

- only good in situations where Hartree-Fock is reasonable
- may be solved by including fragmentation Dewulf et al. Phys. Rev. C 65 (2002)
- use of other phonons

In general

- no over-correlation
- works for nuclei, atoms, molecules
- should work for extended systems (electron gas, H-chains, schematic models,...)
- can be improved by better self-consistency
- speed can be improved by partial diagonalization with Lanczos-algorithm

References

- adc(3) J. Schirmer, L.S. Cederbaum, O. Walter, Phys. Rev. A 28, 1237 (1983)
- theory C. Barbieri, W.H. Dickhoff, Phys. Rev. C 63, 034313 (2001)
- nuclei C. Barbieri, W.H. Dickhoff, Phys. Rev. C 65, 064313 (2002)
- atoms C. Barbieri, D. Van Neck, W.H. Dickhoff, Phys. Rev. A 76, 052503 (2007)
- molecules M. Degroote, D. Van Neck, C. Barbieri, Phys. Rev. A 83, 042517 (2011)

