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Time-Dependent Hartree-Fock
Sensible for degenerate low-energy reacting systems.
Time-dependent Slater determinant

Φ
(
{rrr i}Aj=1, t

)
=

1
A!

∑
σ

A∏
k=1

(−1)sgnσφk
(
rrrσ(k), t

)
⇒ i

∂

∂t
φj = −∇

2

2m
φj + U({φk})φj

semicentral
22Ne + 16O
Ecm = 95 MeV

Umar & Oberacker
Phys. Rev. C 74
(2006) 024606
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Time-Dependent Hartree-Fock in Practice
Theory predicts a low-` fusion
window developing at higher
energies in reactions.

head-on 16O+22Ne at Ecm = 95 MeV
Umar & Oberacker ’07

Data: NO low-` fusion window!
Szanto de Toledo et al PRL47(81)1881
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High Energies: Boltzmann Equation
∂f
∂t

+
∂εppp
∂ppp

∂f
∂rrr
−
∂εppp
∂ppp

∂f
∂ppp

= I{f}

Au+Au at 400 MeV/nucleon
P.D. Nucl Phys A673 (2000) 375

f (rrr ,ppp, t) '
∑

i δ(rrr −rrr i(t)) δ(ppp−pppi(t))

Test particles: ṙrr i =
∂εppp
∂ppp ṗppi = −∂εppp

∂rrr

symbols data:
Nagamiya PRC24(81)971

system gasifies histograms - calcs
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Density Matrix
Ties TDHF and Boltzmann equations. . .

Density matrix: ρ(rrr1 rrr ′1 t) = 〈Φ|ψ†(rrr ′1 t)ψ(rrr1 t)|Φ〉
Yields all 1-ptcle observables
E.g. particle density represents diagonal of this matrix, as

n(rrr t) = ρ(rrr rrr t) = 〈Φ|ψ†(rrr t)ψ(rrr t)|Φ〉 (expectation of density op)

For a Hartree-Fock state, the density matrix is a superposition
of products of occupied orbitals φα:

ρ(rrr1 rrr ′1 t) =
∑
α

φα(rrr1 t)φ∗α(rrr ′1 t) n(rrr t) =
∑
α

|φα(rrr t)|2

Wigner function is a quantal version of phase-space distribution
& Fourier-transform of the density matrix in relative arguments:

f (ppp rrr t) =

∫
d(rrr1 − rrr ′1) e−ippp(rrr1−rrr ′1) ρ(rrr1 rrr ′1 t) rrr = (rrr1 + rrr ′1)/2

doubled spatial argument in ρ⇔ momentum at a given position
6D 2 × 3D

Quantum Transport for Reactions Danielewicz
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Density Matrix & 1-Ptcle Green’s Function

Density matrix: ρ(rrr1 rrr ′1 t) = 〈Φ|ψ†(rrr ′1 t)ψ(rrr1 t)|Φ〉

Green’s Function: − iG<(rrr1 t1 rrr ′1 t ′1) = 〈Φ|ψ†(rrr ′1 t ′1)ψ(rrr1 t1)|Φ〉

For a Hartree-Fock state, sum over occupied orbitals:

−iG<(rrr1 t1 rrr ′1 t ′1) =
∑
α

φα(rrr1 t1)φ∗α(rrr ′1 t ′1)

Green’s function contains all the info of density matrix & more.
E.g. density in momentum and energy at given position & time

−iG<(ppp ε rrr t) =

∫
d(rrr1 − rrr ′1) d(t1 − t ′1) ei[ε(t1−t ′1)−ppp(rrr1−rrr ′1)]

× (−i)G<(rrr1 t1 rrr ′1 t ′1)

for static HF =
∑
α

fα(ppp rrr) δ(ε− εα)

⇒ Spectral function probed in electron scattering.
Quantum Transport for Reactions Danielewicz
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Quantum 1-Particle Dynamics

General 1-Ptcle Green’s Funct: i G(1,1′) = 〈Φ|T
{
ψ(1)ψ†(1′)

}
|Φ〉

T - ordering operator: allows either order of ψ & ψ†

Dyson Equation: G = G0 + G0 Σ G where

i Σ(1,1′) = 〈Φ|T
{

j(1) j†(1′)
}
|Φ〉irr and

(
i
∂

∂t1
+
∇∇∇2

1
2m

)
ψ(1) = j(1)

G−1
0 source

Kadanoff-Baym eqs - Dyson for a specific operator-order, such
as −iG<(1,1′) = 〈ψ†(1′)ψ(1)〉,(

i
∂

∂t1
+
∇∇∇2

1
2m

)
G≶(1,1′) =

∫
d1′′Σ+(1,1′′) G≶(1′′,1′)

+

∫
d1′′Σ≶(1,1′′) G−(1′′,1′)

Quantum Transport for Reactions Danielewicz
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Kadanoff-Baym Equations(
i
∂

∂t1
+
∇∇∇2

1
2m

)
G≶(1,1′) =

∫
d1′′Σ+(1,1′′) G≶(1′′,1′)

+

∫
d1′′Σ≶(1,1′′) G−(1′′,1′)

Variety of physics in different situations, for a variety of Σ

E.g. when Σmf >> Σ≶, as in a highly degenerate system, the
mean-field (TDHF) approximation applies with

−i G<(1,1′) ≈
A∑

j=1

φj(1)φ∗j (1′)

If scale(1+1′) >> scale(1−1′) in Green’s functions, quasiparticle
approximation with evolution governed by Boltzmann equation
applies

−i G<(1,1′) ≈
∫

dppp f (ppp,1) ei ppp(xxx1−xxx1′ )−i ωppp(t1−t1′ )

Direct solution of KB??: 4+4=8D calculation! TDHF - 4D (× 1D)
Quantum Transport for Reactions Danielewicz
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Equilibration in Uniform Matter
Boltzmann GF GF+ini corr 400 MeV/nucleon model of

early reaction dynamics
test of Boltzmann eq

G, Σ diagonal in ppp
8D→ 5D −1D = 4D (like TDHF)

Rate comparison

PD ’84 (Thesis)
Quantum Transport for Reactions Danielewicz
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Towards Reaction Simulations: Collisions in 1D
Issues to consider for nonuniform matter:

matrix rather than wavefunction dynamics
preparation of initial state
abundance of mtx elements (50)8 = 4× 1013 !

START W/MF: Ann Phys 326(11)1274(
i
∂

∂t1
+
∇∇∇2

1
2m
− Σmf

(
−iG<(1,1)

))
(−i)G<(1,1′) = 0

G<(x1 t1 x1′ t1′)
FFT↔ G<(p1 t1 p1′ t1′)

G<(t1+∆t , t1′) = e−i∆t(K +Σ) G<(t1, t1′)

=
(

e−i∆t Σ/2 e−i∆t K e−i∆t Σ/2 +O
(

(∆t)3
))

G<(t1, t1′)

So far, just altering mtx-element phase; full unitarity
Only t = t ′ matters for MF, so G← ρ!

Quantum Transport for Reactions Danielewicz
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Initial State Through Adiabatic Evolution
Optimally, the same code for reaction dynamics and initial-state
preparation. Adiabatic switching, from harmonic oscillator to
self-consistent mean-field solution:

H(t) = HHO f (t) +Hmf(t) (1− f (t))

f →

{
1 , t → −∞
0 , t → +∞

E.g.

f (t) =
1

1 + exp t−t0
τ

Before: Pfitzner, Cassing & Peter, NPA577(94)753
Tohyama, ProgThPh92(94)905

Quantum Transport for Reactions Danielewicz
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Adiabatic Switching of Interaction

System Size Density

from HO to self-consistent solution

Quantum Transport for Reactions Danielewicz
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Dependence on Transition Function

paradox: slower
change yields
inferior results
than smoother

Quantum Transport for Reactions Danielewicz
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Collisions at Ecm/A = 0.1 MeV
Boost: ρ(x , x ′, t = 0)→ eipx ρ(x , x ′, t = 0) e−ipx ′

Without Coulomb force, fusion takes place at the low energy.
Density n(x , t) and real part of density matrix ρ(x , x ′, t)

X

density n(x) = ρ(x , x) (diagonal), ρ(x , x ′) =
∑

α nα ϕα(x)ϕ∗α(x ′)
Quantum Transport for Reactions Danielewicz
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Collisions at Ecm/A = 4 MeV
Break-up

Density n(x , t) and real part of density matrix ρ(x , x ′, t)

X

density n(x) = ρ(x , x) (diagonal), ρ(x , x ′) =
∑

α nα ϕα(x)ϕ∗α(x ′)
Quantum Transport for Reactions Danielewicz
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Collisions at Ecm/A = 25 MeV
Multifragmentation

Density n(x , t) and real part of density matrix ρ(x , x ′, t)

X

Density is identical with the diagonal: n(x , t) = ρ(x , x , t).

Quantum Transport for Reactions Danielewicz
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Re & Im of ρ at Ecm/A = 0.1 MeV
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Re & Im of ρ at Ecm/A = 25 MeV
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Cuts of ρ(x1, x2, t), across the Diagonal
Ecm/A = 4 MeV

each panel another t

Real part
- symmetric
Imaginary part
- antisymmetric

Quantum Transport for Reactions Danielewicz
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Origin of Far-Off Terms in ρ(x , x ′, t)

ρ(x , x ′, t) =
∑
α

nα ϕα(x , t)ϕ∗α(x ′, t)

Quantum Transport for Reactions Danielewicz
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Suppressing the Off-Diagonal Elements
Following far off-diagonal elements of the density matrix
ρ(x , x ′, t) or of generalized density matrix ρ(x , t , x ′, t ′)
impossible in 3D. How important are those elements? They
account for a phase relation between separating fragments.

L0-L

-L

0

L

x

x’

x=
x’

L-x0- 0d
x0 0d

Evolution using imaginary superoperator suppressing large |x − x ′|

ρ(x , x ′, t + ∆t) ∼ e−i(ε(x)+iW (x ,x ′))∆t ρ(x , x ′, t) e+i(ε(x)−iW (x ,x ′))∆t

Quantum Transport for Reactions Danielewicz
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Evolution with Erased Elements at Ecm/A = 0.1 MeV
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Evolution with Erased Elements at Ecm/A = 0.1 MeV

Different cuts across the diagonal of the density matrix

Quantum Transport for Reactions Danielewicz
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Evolution with Erased Elements at Ecm/A = 0.1 MeV
Energy and System Size for Different Suppressions

Quantum Transport for Reactions Danielewicz
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Evolution with Erased Elements at Ecm/A = 25 MeV

Real Part of Density Matrix ρ(x , x ′, t)
for Different Suppressions at t = 80 fm/c

Quantum Transport for Reactions Danielewicz
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Evolution with Erased Elements at Ecm/A = 25 MeV
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Evolution with Erased Elements at Ecm/A = 25 MeV

Different cuts across the diagonal of the density matrix

Quantum Transport for Reactions Danielewicz
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Evolution with Erased Elements at Ecm/A = 25 MeV
Energy and System Size for Different Suppressions

Quantum Transport for Reactions Danielewicz
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Wigner-Function Evolution
Wigner function: f (p, x) =

∫
dy e−ipy ρ

(
x +

y
2
, x − y

2

)
quantum analog of phase-space occupation
in semiclassical limit satisfies Vlasov eq
alternate definition f (p, x) ≡ ρ(p, x) =

∑
α nα ϕα(p)ϕ∗α(x)

Ecm/A = 25 MeV (multifragmentation)

XQuantum Transport for Reactions Danielewicz
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Cutting Elements↔ Averaging Momenta

Wigner function f (p, x) =

∫
dy e−ipy ρ

(
x +

y
2
, x − y

2

)
Wigner f. from ρ with far-off elements cut-off by e−y2/2σ2

:

f (p, x) =

∫
dy e−ipy e−y2/2σ2

ρ
(

x +
y
2
, x − y

2

)
=

∫
dq e−(p−q)2 σ2/2

∫
dy e−iqy ρ

(
x +

y
2
, x − y

2

)
≡
∫

dq e−(p−q)2 σ2/2 f (q, x)

Suppressing of far-off matrix elements in the density matrix ρ is
equivalent to averaging out details in the Wigner function!

Quantum Transport for Reactions Danielewicz



Introduction KB Eqs Towards Application Tinkering w/Evolution Correlations Conclusions

Cutting Elements↔ Averaging Momenta

Wigner function f (p, x) =

∫
dy e−ipy ρ

(
x +

y
2
, x − y

2

)
Wigner f. from ρ with far-off elements cut-off by e−y2/2σ2

:

f (p, x) =

∫
dy e−ipy e−y2/2σ2

ρ
(

x +
y
2
, x − y

2

)
=

∫
dq e−(p−q)2 σ2/2

∫
dy e−iqy ρ

(
x +

y
2
, x − y

2

)
≡
∫

dq e−(p−q)2 σ2/2 f (q, x)

Suppressing of far-off matrix elements in the density matrix ρ is
equivalent to averaging out details in the Wigner function!

Quantum Transport for Reactions Danielewicz



Introduction KB Eqs Towards Application Tinkering w/Evolution Correlations Conclusions

Wigner-Function Comparison (Ecm/A = 25 MeV)
Top: Wigner f from ρ with elements cut off (late stage)
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Bottom: Wigner function from Gaussian averaging
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Forward and Backward in Time!
Red: systems evolved forward in time, with elements at
|x − x ′| > 10 fm suppressed. After reaction completion, evolved
back to t = 0, still with the far-off elements suppressed.
Black: actual initial state
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Far off-diagonal elements are important for coming back to the
initial state! Without the elements, remote past reminds remote
future.
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Forward and Backward in Time!
System Size

Dotted: complete evolution,
time-reversible

Solid: forward when only
|x − x ′| < 10 fm retained

Dashed: backward when
only |x − x ′| < 10 fm
retained
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Switching-On Correlations
⇒ Slab placed in external harmonic-oscillator potential.
At time t = 0 collisions/correlations switched on.
Shown: density in p, scattering-in rate in p, density in x
occupations, slab size, energy breakdown
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Conclusions
Low-energy approach to central nuclear reactions: TDHF
High energy: kinetic Both Deficient
Kadanoff-Baym equations attractive as generalizing either
of the existing approaches.
Findings so far: It should be possible to switch on the
self-consistent interactions adiabatically.
Even for the coherent mean-field evolution, forward in time,
only a limited range (. ~/pF ) of the Green’s function matrix
elements matters.
Discarding far-off spatial elements corresponds to an
averaging over a short scale in momenta.
System expansion⇒ Growing redundancy of info
The far-off elements important for temporal reversibility.

Currently: correlations in 1D. Next: mean-field in 2/3D
Collaborators: Arnau Rios (Surrey), Brent Barker (NSCL-MSU)
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