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Outline 

• Two-body system with zero-range interactions 

• Boundary condition 

• Condensate fraction 

• FFX system 

• Entire energy spectrum, Lippmann-Schwinger approach 

• Atom-dimer approximation in as/aho << 1 limit 

• Green’s function, Lippmann-Schwinger approach 

• Exact energies at unitarity (sL,n eigenvalues) 

• Thermodynamics 

• High temperature thermodynamics up to third virial coefficient 

• Thermodynamics of few-body systems 

• Outlook and summary  
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Many-body Hamiltonian 
We are interested in general masses m1 and m2 with only two-body forces 

The details of the underlying potential don’t matter, so I utilize a zero-range delta  

function potential. 

BEC Unitarity 

1 / as = 0 

BCS 

Low T → large λdB, only s-wave 



Two s-Wave Interacting Particles in 

External Spherically Harmonic Trap 

Wave function is separable in relative and center of mass coordinates 

Interactions occur only in L = 0 channel in relative coordinate (aho = 1 below) 

Lim 

r →0 

Applying boundary condition to outside solution leads to quantization condition 

Thomas Busch, Berthold-Georg Englert, Kazimierz Rzażewski, Martin Wilkens, 

Foundations of Physics, v28 pp 549-559 (1998) 

r > 0 

ν = Erel/(2ħω) + 3/4 



Two s-Wave Interacting Particles in External 

Spherically Harmonic Trap 
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Eni=(2n+3/2)ħω 

Eunit=(2n+1/2)ħω 

Eni=(2n+3/2)ħω 

Finite-angular momentum states: Erel=(2n+L+3/2)ħω. 

Busch et al., Found. of Phys. (1998). 

aho/as 



Condensate Fraction for N=2 System 

With Zero-Range Interactions 

In general we have the one-body density matrix: 

For the 2 particle system with ZR interactions, the wave function is known (here in  

atomic mass units, aho,m = 1): 

Expand the relative wave function in the non-interacting basis: 

Ci  are known 



Condensate Fraction for N=2 System With 

Zero-Range Interactions 

 

n0 

n1 

n2 

n3 

Calculate (projected) one-body 

density matrix (semi-analytically). 

Diagonalize to obtain occupation 

numbers and natural orbitals. 

Results are very accurate. 

NI 

NI (expansion in x=as/aho): 

n0=10.42000429…x2  0.373241…x3+… 

aho/as 



(Lrel,rel)=(1,-1) 

Eni,rel = (2q+sNI
L,n+1)ħω, 

q=0,1,...  

(1 more state for each 

higher q). 

 

1 state of each Eni,rel 

manifold goes to 

“atom plus dimer 

state” with energy  

Eni,rel = Edimer+ 

(2neff+Leff+3/2)ħω. 
 

In blue, energies calculated according to Kestner and Duan PRA 76, 033611 (2007) 

In red, energies calculated according to Werner and Castin PRL (2006) 

In black, perturbative treatment 

How to Understand Energy Spectrum of 

Three-Fermion System? Lrel>0. 

Leff 

at unitarity 

Eunit,rel=(2q+sL,n+1) ħω 

aho/as 



Aside: Estimation of a(ad) scattering length  

E(2,1) - EDimer 

k = ad 

Prediction: 

a(ad) ~ 1.179 a(aa) 
See G. V. Skorniakov and K. A. 

Ter-Martirosian, Zh. Eksp. Teor. 

Fiz. 31, 775 (1956) [Sov. Phys. 

JETP 4, 648 (1957)]; D.S. Petrov, 

PRA 67, 010703(R) (2003); Shina 

Tan (2008) 

Fit gives a(ad)  ~ 1.18a(aa) 

See J. von Stecher et. al.,  

PRA 77, 043619 (2008) 



A brief reminder of hyperspherical 

coordinates… 

1 

2 
3 

r 

ρ 

We define one length, the hyperradius R, and 3N-4 angles 

Hyperradius describes overall size of the system, α defines geometry 



Green’s function + Lippmann-Schwinger 

In hyperspherical coordinates, full relative wave function leads to a set of coupled  

1-D equations 

For fixed hyper radius, psi solves the adiabatic hyper angular Schrödinger equation  

The Lippmann-Schwinger equation is one method to solve for the channel functions 



Green’s function + Lippmann-Schwinger 

See details in Seth Rittenhouse, PhD. thesis, on JILA website, and  

Rittenhouse, Mehta and Greene, PRA 82, 022706 (2010) 

 

   1. smart choice of the Green’s function  

2.  Limiting behavior of the wave function at small interparticle distance 

Works for any combination of two-body scattering lengths,  

mass ratio κ, angular momentum L, and particle exchange 

symmetry! 



FFX transcendental equation 

L = 0, as → ∞  



FFX unitarity sL,n eigenvalues vs κ 

Odd L behavior 

Even L behavior 

κ=13.607 Efimov physics enters 

Even though resonances can appear, 

for this work we assume universal physics 



More from transcendental equation… 

For each odd L, lowest sL,0 will become  

imaginary at some mass ratio κ 

 

Roughly power law behavior, 

κ ~ 9.864 L1.88  

What do we have now? 

• 2-body energy spectrum (independent of mass ratio) 

• 3-body energy spectrum, at unitarity any mass ratio 

 

What can we do with these? 



Thermodynamics of a two-component 

Fermi gas 
Properties like pressure, entropy, energy calculated from derivatives of the grand  

canonical potential Δb1,1 

Δb2,1 

Δb1,2 

Liu and Hu, PRA 82, 043626 (2010) 

Liu, Hu and Drummond PRL 102, 160401 (2009) Fig 1 



κ = 1 virial coefficients versus ω = ħω/kBT ~ 
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Red:     universal piece (0th order) 

Green: up to 2nd order 

Blue:    up to 4th order 

Purple: up to 6th order 

 

Odd orders vanish 

Δb3 values 

Drummond = -0.06833960 

My result    = -0.068339609311286(3) 



Δb3 = 2,1 or 1,2  as a function of mass ratio κ 

at unitarity 

1 heavy, 2 light 2 heavy, 1 light 

0th order 

2nd order 

4th order 

Interesting behavior at κ~3  

where 2 heavy + 1 light are  

no different from the non- 

interacting system 

On the other hand, 1 heavy + 

2 light is weakly different from 

NI system 



Origin of “diverging” behavior… 

SL=1,n=0 contibution 

 

Full coefficient 

 

All but SL=1,n=0  

Recall Δb3 involves sum over all 

energy states  

1 heavy, 2 light 2 heavy, 1 light 

L=1 



Next steps 

• Understand high T thermodynamics in trap for unequal 

mass systems 

• So far ignored questions related to stability 

• “undo” trap via LDA to get high T thermodynamics of 

homogeneous system 

• Few-body thermodynamics (Canonical ensemble) 

• From optical lattices with few particles per lattice site, deep lattice 

• Jochim’s group at Heidelberg, single microtrap with few particles 

 



Conclusion 

• Determined condensate fraction of trapped two-body 

system 

• Characterized energy spectrum of three-body system with 

unequal masses 

• Determined two- and three-body virial coefficients at 

unitarity with high accuracy 

 

 


