


Why studying superfluidity in neutron stars?

Neutron stars are by nature
guantum systems : they contain
highly degenerate matter which can
therefore exhibit various phenomena
observed in condensed matter
physics like superfluidity.

Superfluidity affects the
evolution of neutron stars
pulsar glitches, pulsations,
precession, cooling, magnetic
field...

Cassiopeia A (NASA)



Are electrons in neutron stars superconducting?

The surface layers of non-accreting neutron stars are mostly
composed of ordinary iron which is not superconducting.

It was found in 2001 (Shimizu et al., Nature
412, 316) that iron under pressure can
become superconducting at densities
p~8.2g.cm3 with Tee ~ 2 K.

But T is much smaller than the temperature in neutron stars.
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Are electrons in neutron stars superconducting?
In the deeper layers of neutron stars at densities p > 10*
gcm~—3, atoms are fully ionised by the pressure

The critical temperature of a uniform non-relativistic electron
gas (jelium) is given by (T, is the plasma temperature)

Tee = Tpi€Xp (—8the/7re2) = Tee x exp(—C(p/pord)*’?)
with porq = my/(47a3/3). At densities above ~ 10° g.cm—3,
electrons become relativistic Vge ~ ¢ so that

(o = €?/hc ~ 1/137)

Ginzburg, J. Stat. Phys. 1(1969),3.

Electrons in neutron stars are not superconducting.



Nuclear superfluidity in neutron stars

The BCS theory was applied to nuclei by Bohr, Mottelson,
Pines and Belyaev

Phys. Rev. 110, 936 (1958).

Mat.-Fys. Medd. K. Dan. Vid. Selsk. 31, 1 (1959).

N.N. Bogoliubov, who developed a
microscopic theory of superfluidity and
superconductivity, was the first to explore its
application to nuclear matter.

Dokl. Ak. nauk SSSR 119, 52 (1958).

Superfluidity in neutron stars was suggested long ago

(before the actual discovery of neutron stars) by Migdal in 1959.
It was first studied by Ginzburg and Kirzhnits in 1964.

Ginzburg and Kirzhnits, Zh. Eksp. Teor. Fiz. 47, 2006, (1964).



Superfluidity and superconductivity in neutron stars

In spite of their names, neutron stars are not only made of

neutrons! As a consequence, they could contain various kinds
of superfluids and superconductors.
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Neutron stars are expected to contain at least a neutron
superfluid in their crust. J




Superfluidity in neutron-star crusts

Most microscopic calculations have been performed in uniform
neutron matter.
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Is the neutron superfluid in the crust really uniform? What is the
effect of the nuclei? J



Nuclear energy density functional theory in a nut shell

tractable and consistent treatment of nuclear matter, atomic

The nuclear energy density functional theory allows for a
nuclei and neutron-star crusts. J

The energy of a lump of matter is expressed as (q = n, p)

E = [ [p(®): Voalr). 70(r).3a(0) o(r)]

where pq(r), 74(r)... are functionals of ¢{¥(r) and (¥ (r)

(hq(r)—xq Bq(r) ) AR _ @ (e
Dg(r)  —hg(r) +2a) \S(r)) 7\l

oE = 0E OE
hgy=-V-—V+ ——i—- Ay = —
q 57 + 5rq I5Jq V xo, q ~



Effective nuclear energy density functional

In principle, one can construct the nuclear functional from
realistic nucleon-nucleon forces (i.e. fitted to experimental
nucleon-nucleon phase shifts) using many-body methods

h2
&= oM =17 (Th + 7p) + A(pn, pp) + B(pn, pp)™n + B(pp, pn)p

+C(pn, pp)(Von)?+C(p, Pn)(Vop)>+D(pn, pp) (Vo) (Vop)

+ Coulomb, spin-orbit and pairing
Drut et al.,Prog.Part.Nucl.Phys.64(2010)120.
But difficult task so in practice, we use phenomenological
(Skyrme) functionals
Bender et al.,Rev.Mod.Phys.75, 121 (2003).



Phenomenological corrections for atomic nuclei
For atomic nuclei, we add the following corrections:
Ecorr = EW + Eu:oII

@ Wigner energy

2 2
Ew = Vw eXP{—)\<N_Z> }+V\§V|N—Z\exp{—<A> }
A Ay

@ rotational and vibrational spurious collective energy

Ecal = E%tank{b tanh(c|Bz|) + d|B2| exp{-I(|32] —53)2}}



Construction of the functional

Experimental data :
@ 2149 measured nuclear masses with Z,N > 8
@ compressibility 230 < K, < 250 MeV
@ charge radius of 2°®Pb, R, = 5.501 + 0.001 fm
N-body calculations with realistic forces
@ isoscalar effective mass M&/M = 0.8
@ equation of state of pure neutron matter
@ 1S, pairing gaps in symmetric and neutron matter
@ Landau parameters (stability against spurious instabilities)

Chamel, Goriely, Pearson, Phys.Rev.C80,065804 (2009).
Chamel&Goriely, Phys.Rev.C82, 045804 (2010)

With these constraints, the functional is well suited for
describing neutron-star crusts.




Empirical pairing energy density functionals

1 T ~2
gpair = 4 q;pv q[pmpp]pq

. pn +pp\ ™
=i i (222)")

Drawbacks

@ not enough flexibility to fit realistic pairing gaps in infinite
nuclear matter and in finite nuclei (= isospin dependence)

@ the global fit to nuclear masses would be computationally
very expensive




Microscopically deduced pairing functional

Assumptions :
@ v™[pn, pp] = v™9[pq] depends only on pq
Duguet, Phys. Rev. C 69 (2004) 054317.
@ isospin charge symmetry v™" = v™P = y7
@ V7[pq] is the locally the same as in infinite nuclear matter
with density pq

V7 [pq] = V™ [Aq(pq)] constructed so as to reproduce exactly a
given pairing gap Aq(pq) in infinite homogeneous matter by
solving directly the HFB equations

Chamel, Goriely, Pearson, Nucl. Phys.A812,72 (2008).



Pairing in nuclei and in nuclear matter

Inverting the HFB equations yields

-1
ro 1o g2 (1 V2 [ ppaten Ve
V7[pg] = -8 (2Mg;> (/0 dg\/(guq)2+Aq(pq)2)

h2
Ha = omg

(37T2pq)2/3
Cutoff prescription: s.p. energy cutoff £5 above the Fermi level
This procedure provides a one-to-one correspondence

between the pairing strength in finite nuclei and the 1Sy pairing
gap in infinite nuclear matter.



Analytical expression of the pairing strength

In the “weak-coupling approximation” Agq < jiq and Aq < ep

- B 812 h? 3/2
Vlral = ~lg(pq) <2M§(Pq)>

o dalon () 1 (2)

A(x) = log(16x) + 2v1 + x — 2log (1 + \/m> _4

Chamel, Phys. Rev. C 82, 014313 (2010)

@ exact fit of the given gap function Aq(pq)
@ no free parameters
@ automatic renormalization of the pairing strength with e,



Pairing gaps from contact interactions

The weak-coupling approximation can also be used to
determine the pairing gap of a Fermi gas interacting with a
contact force

2
A=2uexp| ———
g (g(u)vr’ég>

v is the chemical potential, g(x) is the density of states and v
is a regularized interaction

1 1 1
—ynr " ym
Viig VT V]
4
Vi =



Accuracy of the weak-coupling approximation

This approximation remains very accurate at low densities
because the s.p. density of states is not replaced by a constant

as usually done.
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Pairing in dilute neutron matter

At very low densities, the 15 Boon
.. . . ]
pairing gap is given by
@ 10F Bges 4
g -Emlz:cosh
A 2\ ex il T e L 25 |
" \e Hn &XP 2Krann . e\eife‘se,”./ moj
0—7 0 T 5
(k)

Gorkov&Melik-Barkhudarov, Sov.

Phys. JETP. 13, 1018, (1961). Chang et al. Phys.Rev.A70,

043602 (2004).

. 87T2 h2 3/2
=Vl == (2M::(pn>>

N 14 8 ™ EA
n= iz 302 (i) ()




Pairing cutoff and experimental phase shifts
In the limit of vanishing density, the pairing strength

472 K2 3/2
s o= —— [
vl 0= = (i)

should coincide with the bare force in the 1Sy channel.
A fit to the experimental 1Sy NN phase shifts yields

en ~ 7 — 8 MeV.
Esbensen et al., Phys. Rev. C 56, 3054 (1997).

On the other hand, a better mass fit
can be obtained with ey ~ 16 MeV
while convergence is achieved for

1 en 2 40 MeV.

ok ‘ i Goriely et al., Nucl.Phys.A773(2006),279.

0 10 £O 3‘0 40
s.p. cutoff [MeV]




Choice of the pairing gap

Fit the 1S, pairing gap obtained with realistic NN potentials at
the BCS level (no medium effects)

Pairing gap obtained with
Argonne V4 potential

L 1 L 1 L 1 L 1 L | n n 1
0 0.02 0.04 0.06 0.08 01 0.12 0.14
p, [fm’]

@ Ap(pn) essentially independent of the NN potential
@ An(pn) completely determined by experimental 1Sq nn
phase shifts

Dean&Hjorth-Jensen,Rev.Mod.Phys.75(2003)607.



Neutron vs proton pairing

@ Because of possible charge symmetry breaking effects
proton and neutron pairing strengths may not be equal

v o] # vTP[p]

@ The neglect of polarization effects in odd nuclei  (equal
filling approximation) is corrected by “staggered” pairing

= we introduce renormalization factors fqjE (f: = 1 by definition)

V™ [on] = fa v [on]

VP lpp] = finW[Pp]



What comes out of the global mass fit?

i | 1.00
fi | 1.06
fom | 0.99
f, | 1.05

This is in agreement with a
recent analysis by Bertsch et
al. Phys.Rev.C79(2009),034306

Neutron vs proton pairing

= neutron and proton pairing strengths are
effectively equal f, /fy ~ fy /f"
= the pairing strength is larger for odd nuclei

fq >4
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1S, pairing gap in neutron matter

This new mass model yields a much more realistic gap than our
previous mass models!
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Neutron-matter equation of state at subsaturation

densities
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Dilute neutron-matter equation of state
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Gezerlis & Carlson, Phys. Rev. C 81, 025803 (2010).



Neutron-matter equation of state at high densities
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Constraints from heavy-ion collisions

Our functional BSk16 is consistent with the pressure of
symmetric nuclear matter inferred from Au+Au collisions
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Danielewicz et al., Science 298, 1592 (2002).

0OL—45"7% 25




HFB-16 mass table

Results of the fit on the 2149 measured masses with Z,N > 8

HFB-16 HFB-15 HFB-14 HFB-8
o(M)Mev] | 0.632 0.678 0.729 0.635
&M)mev] | -0.001 0.026 -0.057 0.009
o(Mnr) Mev] | 0.748  0.809  0.833  0.838
éMnr) Mev] | 0.161  0.173  0.261  -0.025
o(Sn) Mev] | 0.500 0.588  0.640  0.564
&Sn) Mev] | -0.012 -0.004 -0.002 0.013
o(Qs) Mev] | 0.559  0.693  0.754  0.704
#(Qp) Mev] | 0.031  0.024 0.008 -0.027
o(Rc) fm | 0.0313 0.0302 0.0309 0.0275
éRc) fm] | -0.0149 -0.0108 -0.0117 0.0025
6(°%8Pb) [fm) | 0.15 0.15 0.16 0.12




A[MeV]

HFB-17 mass model: microscopic pairing gaps
including medium polarization effects

Fit the 1Sy pairing gaps of both neutron matter and symmetric
nuclear matter obtained from Brueckner calculations taking
into account medium polarization effects

Neutron matter Symmetric nuclear matter
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Cao et al.,Phys.Rev.C74,064301(2006).



New expression of the pairing strength

@ the pairing strength is allowed to depend on both p, and pp

V™% pn, pp] = V™ UAq(pn, pp)]

@ Aq(pn, pp) is interpolated between that of symmetric matter
(SM) and pure neutron matter (NM)

Aq(pn, pp) = Asm(p)(L —|n|) £ ANM(Pq)n%

_ Pn—Pp

’]7_
Pn + Pp

@ Mg = M to be consistent with the neglect of self-energy
effects on the gap

Goriely, Chamel, Pearson, PRL102,152503 (2009).
Goriely, Chamel, Pearson, Eur.Phys.J.A42(2009),547.



Density dependence of the pairing strength
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Isospin dependence of the pairing strength
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HFB-17 mass table

Results of the fit on the 2149 measured masses with Z,N > 8

HFB-16 HFB-17
(2149 M) | 0.632  0.581
é2149 M) | -0.001  -0.019
o(Mnr) 0.748  0.729
é(Mnyr) 0.161  0.119
o(Sn) 0.500  0.506
&(Sn) -0.012  -0.010
o(Qp) 0.559  0.583
é(Qp) 0.031  0.022
a(Re) 0.0313  0.0300
éRe) -0.0149 -0.0114
6(2°8Pp) 0.15 0.15




HFB-17 mass predictions

Differences between experimental and calculated masses as a
function of the neutron number N for the HFB-17 mass model.
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Predictions to newly measured atomic masses

HFB mass models were fitted to the 2003 Atomic Mass
Evaluation.

The predictions of these models are in good agreement
with new mass measurements

HFB-16 HFB-17
o(434M) | 0.484  0.363
434 M) | -0.136  -0.092
o(142M) | 0516  0.548
Z142M) | -0.070  0.172

Litvinov et al., Nucl.Phys.A756, 3(2005)

http://research.jyu.fi/igisol/JYFLTRAP_masses/ gs_masses.txt



Nuclear masses: HFB-16 vs HFB-17

Differences between the HFB-16 and HFB-17 mass predictions
as a function N for all 8 < Z < 110 nuclei lying between the

proton and neutron drip lines.

M(HFB-16)-M(HFB-17)

AM [MeV]
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Superfluidity in neutron-star crusts with the

Wigner-Seitz approximation

The HFB equations in neutron-star crusts have been already
solved by several groups using the W-S approximation

The effects of the clusters are found to be dramatic at high
densities (> 0.03 nucleons per fm3), in some cases the pairing
gaps are almost completely suppressed

Baldo et al., Eur.Phys.J. A 32, 97(2007).




Limitations of the W-S approximation

Problems

@ the results of HFB calculations depend on the boundary
conditions which are not unique

@ the nucleon densities and pairing fields exhibit spurious
fluctuations due to box-size effects

LT S L

1 1 1
0 5 10 15
r, fm

Baldo et al., Eur.Phys.J. A 32, 97(2007).

Spurious shell effects « 1/R?
are very large in the bottom
layers of the crust and are
enhanced by the
self-consistency of the
calculations.



Nuclear band theory

Go beyond the W-S app. by using the band theory of solids
Chamel et al., Phys.Rev.C75(2007)055806.

The band theory takes consistently into account both nuclear
clusters and free neutrons

ik-r

Qpak(r) =€ uak(r)

uak(r +T) = uock(r)

@ « — rotational symmetry around the lattice sites
@ k — translational symmetry of the crystal



Anisotropic multi-band neutron superfluidity

In the decoupling approximation, the Hartree-Fock-Bogoliubov
equations reduce to the BCS equations

1 DAger . Ege

— o pair Bk Bk

Aok =3 Vaka—kik sk, B 5T
Bk Ak

T o = [ SO0, O] ek e 0

Eok = \/(fak — p)? + A%
Eak» 1 and .k (r) are obtained from band structure calculations

Chamel et al., Phys.Rev.C81,045804 (2010).



Validity of the decoupling approximation

The decoupling approximation means that
/d3r o (DA o (r) = 5a5/d3r ok (N)2A(F)

This approximation is justified whenever A(r) varies slowly as
compared to . (r) for those states in the vicinity the Fermi
level.

@ bad for weakly bound nuclei (delocalized continuum states
involved while Aq(r) drop to zero outside nuclei)

@ good for strongly bound nuclei
@ exact for uniform matter

= reasonable for dense layers of neutron-star crusts



Analogy with terrestrial multi-band superconductors

Multi-band superconductors were first studied by Suhl et al. in
1959 but clear evidence were found only in 2001 with the
discovery of MgB, (two-band superconductor)

In neutron-star crusts,
@ the number of bands can be huge ~ up to a thousand!

@ both intra- and inter-band couplings must be taken into
account




Description of neutron star crust beyond neutron drip

The equilibrium structure of the inner crust is determined with
the Extended Thomas-Fermi (up to 4th order)+Strutinsky
Integral method (ETFSI).

@ Pairing is expected to have a small impact on the
composition and is therefore neglected.
@ Nuclei are assumed to be spherical.

Onsi et al., Phys.Rev.C77,065805 (2008).

Advantages of ETFSI method
@ very fast approximation to the full Hartree-Fock method
@ avoids the difficulties related to boundary conditions but
include proton shell effects (neutron shell effects are
generally much smaller and are therefore omitted)
Chamel et al.,Phys.Rev.C75(2007),055806.




Ground-state composition of the inner crust

Results for BSk14
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Onsi, Dutta, Chatri, Goriely, Chamel and Pearson,
Phys.Rev.C77,065805 (2008).



Ground-state composition of the inner crust

ETFSI calculations for two different functionals

with HFB-14 with HFB-17
np f=3) | z A np (=3 2z A
0.0003 |50 200 0.0003 |50 190
0.001 50 460 0.001 50 432
0.005 50 1140 0.005 50 1022
0.01 40 1215 0.01 50 1314
0.02 40 1485 0.02 40 1258
0.03 40 1590 0.03 40 1334
0.04 40 1610 0.04 40 1354
0.05 20 800 0.05 40 1344
0.06 20 780 0.06 40 1308




Neutron pairing gaps vs single-particle energies
Example at n, = 0.06 fm—23 with BSk16
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The presence of clusters reduces A, but much less than
predicted by previous calculations



Average neutron pairing gap vs temperature
Example at n, = 0.06 fm—2 with BSk16
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@ Ak(T)/Axk(0) is a universal function of T

@ The critical temperature is approximately given by the
usual BCS relation T¢ ~ 0.567Af




Neutron pairing gaps vs density

nf is the density of unbound neutrons
A, is the gap in neutron matter at density nf,
Ay is the gap in neutron matter at density np

np [fm=3] | z A | nf [fm=3] [ Ar[MeV] | A, [MeV] | A, [MeV]
0.07 40 | 1218 0.060 1.44 1.79 1.43
0.065 40 | 1264 0.056 1.65 1.99 1.65
0.06 40 | 1260 0.051 1.86 2.20 1.87
0.055 40 | 1254 0.047 2.08 2.40 2.10
0.05 40 | 1264 0.043 2.29 2.59 2.33

@ the nuclear clusters lower the gap by 10 — 20%
@ both bound and unbound neutrons contribute to the gap J



Pairing field and local density approximation
The effects of inhomogeneities on neutron superfluidity can be
directly seen in the pairing field

A

Bu(r) = =5V [on(0).po(E)n(F) () = Y I (D) £
ok a

Neutron pairing field for n, = 0.06 fm3atT =0
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Chamel et al., Phys.Rev.C81(2010)045804.



Pairing field at finite temperature
At T > 0, the neutron pairing field is given by

A
1 - - ~ zAak Eak
An(r) = 5V "[on(r), pp(r)]An(r), n(r) = Ek [Pak (F)] gtanhf

Neutron pairing field for n, = 0.06 fm—3
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Chamel et al., Phys.Rev.C81(2010)045804.



A(r) [MeV]

Impact of the pairing cutoff
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r[fm]

N [fM~=3] | Aro(16) [MeV] | Aro(8) | Aro(4) | Aro(2) | Aro(1)

0.070 1.39 1.38 1.37 1.36 1.29

0.050 2.27 2.25 2.27 2.26 2.24

Pairing gaps (hence also critical temperatures) are very weakly
dependent on the pairing cutoff. J



Impact on thermodynamic quantities : specific heat

0.03— inhomogeneous superfluid I

--- homogeneous superfuid p
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@ Band structure effects are small. This remains true for

non-superfluid neutrons.
Chamel et al, Phys. Rev. C 79, 012801(R) (2009)

@ The renormalization of T, comes from the density
dependence of the pairing strength.



How “free” are neutrons in neutron-star crusts?

Due to the interactions with the periodic lattice, neutrons move
in the inner crust as if they had an effective mass mj.

ThIS iS a We”-known Vaiencleom!t Dlnec.tionofcurnent—-»
effect in solid-state 7\ NN [ \
physics (typically 5 @) °(a @) o ()] ),
mj ~ 1 — 2me). » o2/ \? o=/
o
m} is related to the ’ 7 )_j,-:») '\ {;Jg; W Oﬁfﬁ
current-current 27 \eg%s &4/
correlation function. O pden a

This entrainment effect is very important for the
hydrodynamics of the neutron superfluid

Carter, Chamel, Haensel, Int.J.Mod.Phys.D15(2006)777.
Pethick, Chamel, Reddy, Prog.Theor.Phys.Sup.186(2010)9.



Unbound neutrons vs conduction neutrons

nf is the density of unbound neutrons
nS = nfmp/m¥ is the density of conduction neutrons

np(fm=3) | Z | A [nf/n (%) | n§/ni (%)
0.0003 50 | 200 20.0 82.6
0.001 50 | 460 68.6 27.3
0.005 50 | 1140 86.4 17.5
0.01 40 | 1210 88.9 15.5
0.02 40 | 1480 90.3 7.37
0.03 40 | 1595 914 7.33
0.04 40 | 1610 88.8 10.6
0.05 20 | 800 914 30.0
0.06 20 | 765 91.5 45.9
0.07 20 | 714 92.0 64.6
0.08 20 | 665 104 64.8




Entrainment effects in cold atoms

Simiar entrainment effects are also predicted in unitary Fermi
gases and could thus be potentially measured in laboratory
Example: unitary Fermi gas in a 1D optical lattice
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Watanabe et al., Phys. Rev. A78(2008),063619



Summary

© The nuclear energy density functional (EDF) theory allows
for a consistent treatment of superfluid neutrons in
neutron-star crusts.
@ We have developed semi-local EDF constrained by
experiments and N-body calculations:
@ they give an excellent fit to essentially all nuclear mass data
(0 =581 keV for HFB-17)
@ they reproduce various properties of infinite nuclear matter
(Eo0S, pairing gaps, etc)
© Using the band theory of solids, we have shown that the
nuclear lattice affects both the static and the dynamic
properties of the neutron superfluid in the dense layers of
neutron-star crusts.



