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OUTLINE OF THE TALK
¢ What is the unitary gas ?

e Simple facts from scaling invariance
e Time-dependent solution in a trap

e Separability in hyperspherical coordinates

e The 4-body Efimov effect



WHAT IS THE UNITARY GAS ?



DEFINITION OF THE UNITARY GAS

e Non-relativistic particles with s-wave binary interaction
with a two-body scattering amplitude
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e “Maximally” interacting: Unitarity of S matrix imposes

|fr] < 1/k.

e In real experiments with magnetic Feshbach resonance

(Thomas, Salomon, Jin, Ketterle, Grimm, ...) :
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almost unitary if “infinite” scattering length a and *“zero”

ranges:
ktyp|a| > 1aktyp|'re| < 1, ktypb < 1.

e All these two-body conditions are only necessary.



THE ZERO-RANGE WIGNER-BETHE-PEIERLS MODEL

e Interactions are replaced by contact conditions.

e For r;; — 0 with fixed ij-centroid ng (m;Ti+m;r;) /(my+
m;) different from 7y, k # 1, j:

Tij
e Elsewhere, non interacting Schrodinger equation
-2 ) _

Eyp(X) = |~ —A g+ omw?X?| $(X)

1 .
Y(F1y...,TN) = <— ) A;ilCiis (TR ki 5] + O(7ij)

with X = (71,...,7N).

e Exchange symmetry: Even for boson positions, odd for
same-spin fermion positions.

e Unitary gas exists iff Hamiltonian is self-adjoint.



SIMPLE FACTS FROM SCALING INVARIANCE



SCALING INVARIANCE OF CONTACT CONDITIONS

— ]_ —
PY(X) = —A;[Ci5 (PR ] + O(Tij)
Tij—>0 ’I"ij
¢ Domain of Hamiltonian is scaling invariant: If 1) obeys
the contact conditions, so does 1) with

¥A(K) = 575 X/

e Consequences (also true for the ideal gas):

free space box (periodic b.c.) trap

VN, no bound states(*) PV =2FE/3 virial F = 2FE},m

() If 1) of eigenenergy E, 1y of eigenenergy E /A2, Square integrable eigenfunctions

(after center of mass removal) correspond to point-like spectrum, for selfadjoint H.




USEFUL CONSTRAINTS FOR MONTE CARLO
& = u(T =0)/Er < 0,41 (Carlson, 2009)]
Burovski, Prokof’ev, Svistunov, Troyer (2006), T¢/TFp =

0335025 03 035 04 045 05
E(T)INE,



TIME-DEPENDENT SOLUTION IN A TRAP



IN A TIME-DEPENDENT TRAP

e At t = 0 : static trap U(r) = mw?r?/2, system in eigen-
state 1¥g(X) of energy FE.

e For ¢t > 0, arbitrary time dependence of trap spring
constant, w(t). Known solution for ideal gas:

. e 10(t) imA .
P(X,t) = N3N/2(3) exp | X Yo(X/A(¢))
with A = w2X73 — W2(H)A and 6 = EA- 2 /h.

e This is a gauge plus scaling transform.

e The gauge transform also preserves contact conditions:

(¥
so solution also applies to unitary gas!
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IN THE MACROSCOPIC LIMIT

—zH(t)

X B -im).\Xz

D Po(X /)

density p(7,t) = po(F/A)/A3| velocity field ¥(7,t) = FA/A

local temp. T(7,t) = T /A% pressure P(+,t) = Py(¥/\)/\°

local entropy per particle s(7,t) = so(r¥/ )

This has to solve the hydrodynamic equations for a normal
gas. Entropy production equation:

pkpT (8is +T-Vs) =V - (kVT) + ¢(V - 7)?

9 2 2
Z vz =,
_I_ ( 833z B géz]v . v)

so the bulk VlSCOSlty is zero: ((p,T) = 0 VT > T.. Repro-
duces the conformal invariance result of Son (2007).




LADDER STRUCTURE OF THE SPECTRUM
e Infinitesimal change of w for 0 <t < t¢. For t > tg:
)\(t) _1—=c e—2iwt + e* e2iwt + 0(62)
so an udamped mode of frequency 2w.

e Corresponding wavefunction change:
w(X’,t) _ {e—iEt/h . ee—i(E—|—2hw)t/hL+

_I_e*e—i(E—Zﬁw)t/ﬁL_} ¢O(X) + 0(62)

¢ Raising and lowering operators:
T .[3N ‘% . 5 ] n H Xz/h
=Ti|— — 11X - 0 — — MW
= 2 X| T hw

(in red, generator of scaling transform)

e Spectrum=—collection of semi-infinite ladders of step 2Aw.
S0O(2,1) hidden symmetry (Pitaevskii, Rosch, 1997).



LADDER STRUCTURE OF THE SPECTRUM (2)

n E +8hw
2hw

¥ Eg+6hoo
2hw

X Eg+4’hoo
2hw

¥ Eg+2hoo
2hw




A USEFUL MAPPING

e Each energy ladder has a ground step of energy Ejg,
eigenfunction g4.

e Integration of L_14 = 0 gives, with X = X7
wg(X’) _ o~ mwX?/2h XEg/(hw)—SN/Zf(,’—i)

e Limit w — 0 : mapping to zero energy free space solu-
tions. N.B.: E;/(hw) is a constant.

e Free space problem solved for N = 3 (Efimov, 1972)...
so trapped case also solved (Werner, Castin, 2006).



SEPARABILITY IN HYPERSPHERICAL COORDINATES



SEPARABILITY IN HYPERSPHERICAL COORDINATES
Werner, Castin (2006)

e Use Jacobi coordinates to separate center of mass C
e Hyperspherical coordinates (arbitrary masses m;):
(7?17“'77?]\7) — (CvRvﬂ)
with 3N — 4 hyperangles () and the hyperradius

N
muRz — Z mz(’F’z — C_;)z
1=1

where m,, is a arbitrary mass unit.

e Hamiltonian is clearly separable:

h? [82—|—3N_48 EINA I 2 ;2
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H internal — —



Do the contact conditions preserve separability 7
e For free space FF = 0, yes, due to scaling invariance:
VE—0 = _ RSN— (3N — 5)/2 (Q)
E = 0 Schrodinger’s equatlon implies

3N — 5
Azp(9) = — SZZV_( 5 )

P(£2)

with contact conditions. 812\, & discrete real set.

e For arbitrary F, Ansatz with £ =0 hyperrangular part
obeys contact conditions [R? = Rz('rz] =0) + O(fr' )]

W = F(R)R™BN=5)/2¢(()

e Schrodinger’s equation for a fictitious particle in 2D:

2 2D hzs%\r 1 2 152
AL F (R —m,w R FI(R
2Mmy, R (R)+ 21, R? + 2 (R)

EF(R) = —




SOLUTION OF HYPERRADIAL EQUATION (N > 3)

2

EF(R) = —zh

u

A2PF(R) +

2my R2 2

h2 g2

1

+ —muw?R?| F(R)

¢ Which boundary condition for F(R) in R = 0?7 Wigner-
Bethe-Peierls does not say.

e Key point: particular solutions ~ R*3 for R — 0.

s > 1

D0<s<K1

s € {RT*

F ~ R?® F

~ (gR)* £ (qR)™"

F ~Im[(qR)°]

0O bound st. | one bound st. if —

oo nber of bound st.

n=(2n + s

+1)Aw,n > 0| N-body resonance
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nez: Eﬁmov effect




THE 4-BODY EFIMOV EFFECT



THREE-BODY EFIMOV EFFECT

e Efimov (1971): Three bosons, 1/a = 0, no dimer state.
Then there exists an infinite number of trimer states,
E = 0 accumulation point, geometric spectrum:

ES)’) ~ B —27n/|ss

n— 4060 ref

where purely imaginary s3 = 2 X 1.00624 solves transcen-

dental equation, EI(,Z’E depends on microscopic details.

e Efimov (1973): Solution for three arbitrary particles,
1/a = 0. E.g. Efimov trimers for two fermions (masse

M, same spin state) and one impurity (masse m) if
(Petrov, 2003)

M
a=— > ae(2;1) ~ 13.607
m

with s3(a) € iRT* from known transcendental equation.



ARE THERE EFIMOVIAN TETRAMERS 7

(4) (4) —2
Ep’ o~ Epege mn/|s4l 7

Negative results:

¢ Amado, Greenwood (1973): “There is No Efimov ef-
fect for Four or More Particles”. Explanation: Case of
bosons, there exist trimers, tetramers decay.

¢ Hammer, Platter (2007), von Stecher, D’Incao, Greene
(2009), Deltuva (2010): The four-boson problem (here

1/a = 0) depends only on EEZ’E, no EI(,;? to add.

e Key point: N = 3 Efimov effect breaks separability in
hyperspherical coordinates for N = 4.

Idea: Consider three fermions (M) and one impurity (m).



REMINDER: MAIN POINTS OF GENERAL THEORY

e To find N-body Efimov effect, one simply needs to cal-
culate the exponents sp;, that is to solve the Wigner-
Bethe-Peierls model at zero energy:

YE—o(F1s - -, 7N) = RSNTBN=5)/24(()

e The N-body Efimov effect takes place if and only if one
of the S%V is < 0.

e General theory OK if AQ» self-adjoint: no n-body Efimov
effect Vn < N — 1.



THE 3 +1 FERMIONIC PROBLEM
(Castin, Mora, Pricoupenko, 2010)

e Three fermions (mass M, same spin state) and one im-
purity (mass m)

e General theory OK for a mass ratio
M
a=— < ae(2;1) ~ 13.607
m

e Calculate E = 0 solution in momentum space. An inte-
gral equation for Fourier transform of A;;:

1 4+ 2«
0=[ 5 (kT + k3) +

/ A3k D(k1, k3) + D(k3, k2)
2772 k2+k2+k2+1 (k- ko + kq - k3 + ko - k3)

e D has to obey fermionic symmetry.




REDUCTION OF THE INTEGRAL EQUATION

Rotational invariance:

e D is the m; = 0 component of a spinor of spin [:
D(ki1, k2) = 'p D(Rk1, Rks)
e Clever choice of the rotation matrix R:

D(k1,k2) =tp ﬁ[klé’w, kg(cos O€, + sin Hé’y)]

21+1 unknown functlons f (kl,kz,e)

Scaling invariance for E = O:
fa (k1 ko, 0) = (K} + k3) = (4+7/2)/2(cosh 2)/2@37) (, 0)

with x = In(k2/kq).
The integral equation gives M éi) [$(l)] = 0.

s4 allowed <— M éi) has a zero eigenvalue




RESULTS

e Numerical exploration up tol = 10

e Four-body Efimov effect obtained for a single s4, in chan-
nel I = 1 with even parity:

El X Ez
[|k1 X k2|
in the interval of mass ratio

ac(3;1) ~ 13.384 < a < ae(2;1) ~ 13.607

D(Ela EQ) = € .f(gl)(klv k2, 9)
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EXPERIMENTAL ASPECTS

e Large scattering length with magnetic Feshbach reso-
nance (Grimm, 2006; Hulet, 2009)

e Radio-frequency spectroscopy of trimers (Jochim, 2010)

e Remaining issue: Narrow interval of mass ratio.

Solution 1: The right mixture
e 41Ca and 3He* have mass ratio o ~ 13.58 € [13.384, 13.607]

e A priori, |s4] ~ 0.75 large enough to see two tetramer
states

e 41Ca has same radioactivity as 239Pu (half-life 10° years)
Solution 2: Mass tuning
e 90K and 3He* have slightly-off mass ratio o ~ 13.25

e Use optical lattice to tune effective mass (Petrov, Shlyap-
nikov, 2007)



MINLOS’S THEOREM (1995)
Theorem: In the n + 1 fermionic problem, the Wigner-
Bethe-Peierls Hamiltonian 1s self-adjoint and bounded from

below iff

20(1 + 1/a)3 rasingfy

(n—1) /
/1 + 2  Jo

e We expect that “not bounded from below” is equivalent
to “with Efimov effect”.

e Case n = 3: alc\/ﬁnlos ~ 5.29 totally differs from ours...

dttsint < 1.

e Case a = 1: No stable unitary gas for n > 9...
e Weak point: Proof not included in Minlos’ paper.

e Recent proof: Teta, Finco (2010). But we have found a
hole in the proof. We can still hope that the macroscopic
o = 1 unitary gas is stable.



