THE UNITARY GAS: SYMMETRY PROPERTIES AND APPLICATIONS

Yvan Castin, Félix Werner, Christophe Mora LKB and LPA, Ecole normale supérieure (Paris, France) Ludovic Pricoupko LPTMC, Université Paris 6

OUTLINE OF THE TALK

- What is the unitary gas ?
- Simple facts from scaling invariance
- Time-dependent solution in a trap
- Separability in hyperspherical coordinates
- The 4-body Efimov effect

WHAT IS THE UNITARY GAS ?

DEFINITION OF THE UNITARY GAS

• Non-relativistic particles with *s*-wave binary interaction with a two-body scattering amplitude

$$f_k = -rac{1}{ik} \quad orall k$$

- "Maximally" interacting: Unitarity of S matrix imposes $|f_k| \leq 1/k.$
- In real experiments with magnetic Feshbach resonance (Thomas, Salomon, Jin, Ketterle, Grimm, ...) :

$$-rac{1}{f_k}=rac{1}{a}+ik-rac{1}{2}k^2r_e+O(k^4b^3)$$

almost unitary if "infinite" scattering length a and "zero" ranges:

$$k_{\mathrm{typ}}|a| \gg 1, k_{\mathrm{typ}}|r_e| \ll 1, k_{\mathrm{typ}}b \ll 1.$$

• All these two-body conditions are only necessary.

THE ZERO-RANGE WIGNER-BETHE-PEIERLS MODEL

- Interactions are replaced by contact conditions.
- For $r_{ij} \rightarrow 0$ with fixed ij-centroid $\vec{C}_{ij} = (m_i \vec{r}_i + m_j \vec{r}_j)/(m_i + m_j)$ different from $\vec{r}_k, k \neq i, j$:

$$\psi(ec{r}_1,\ldots,ec{r}_N) = \left(rac{1}{r_{ij}} - rac{1}{\mathrm{a}}
ight) A_{ij}[ec{C}_{ij};(ec{r}_k)_{k
eq i,j}] + O(r_{ij})$$

• Elsewhere, non interacting Schrödinger equation

$$E\psi(ec{X}) = \left[-rac{\hbar^2}{2m}\Delta_{ec{X}} + rac{1}{2}m\omega^2X^2
ight]\psi(ec{X}) \ ec{X} = (ec{r}_1, \dots, ec{r}_N).$$

- Exchange symmetry: Even for boson positions, odd for same-spin fermion positions.
- Unitary gas exists iff Hamiltonian is self-adjoint.

with

SIMPLE FACTS FROM SCALING INVARIANCE

SCALING INVARIANCE OF CONTACT CONDITIONS

$$\psi(\vec{X}) = rac{1}{r_{ij} o 0} \frac{1}{r_{ij}} A_{ij}[\vec{C}_{ij}; (\vec{r}_k)_{k
eq i,j}] + O(r_{ij})$$

• Domain of Hamiltonian is scaling invariant: If ψ obeys the contact conditions, so does ψ_{λ} with

$$\psi_\lambda(ec{X}) \equiv rac{1}{\lambda^{3N/2}} \psi(ec{X}/\lambda)$$

• Consequences (also true for the ideal gas):

$\forall N \text{ no bound states}^{(*)} = PV - 2E/3$ virial $E - 2E_1$	free space	box (periodic b.c.)	trap
$\mathbf{V} \mathbf{I} \mathbf{V} = 2 \mathbf{L} / 0$ $\mathbf{V} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{L} = 2 \mathbf{L} \mathbf{h} \mathbf{a}$	$\forall N, { m no} { m bound} { m states}^{(*)}$	PV = 2E/3	virial $E = 2E_{\text{harm}}$

(*) If ψ of eigenenergy E, ψ_{λ} of eigenenergy E/λ^2 . Square integrable eigenfunctions

(after center of mass removal) correspond to point-like spectrum, for selfadjoint H.

USEFUL CONSTRAINTS FOR MONTE CARLO $[\xi = \mu(T = 0)/E_F \leq 0, 41 \text{ (Carlson, 2009)}]$ Burovski, Prokof'ev, Svistunov, Troyer (2006), $T_c/T_F = 0.152(7)$; Goulko, Wingate (2010), $T_c/T_F = 0.173(6)$

TIME-DEPENDENT SOLUTION IN A TRAP

IN A TIME-DEPENDENT TRAP

- At t = 0: static trap $U(\mathbf{r}) = m\omega^2 r^2/2$, system in eigenstate $\psi_0(\vec{X})$ of energy E.
- For t > 0, arbitrary time dependence of trap spring constant, $\omega(t)$. Known solution for ideal gas:

$$\psi(\vec{X},t) = rac{e^{-i heta(t)}}{\lambda^{3N/2}(t)} \exp\left[rac{im\dot{\lambda}}{2\hbar\lambda}X^2
ight]\psi_0(\vec{X}/\lambda(t))$$

with $\ddot{\lambda} = \omega^2\lambda^{-3} - \omega^2(t)\lambda$ and $\dot{ heta} = E\lambda^{-2}/\hbar$.

- This is a gauge plus scaling transform.
- The gauge transform also preserves contact conditions:

$$r_i^2 + r_j^2 = 2C_{ij}^2 + rac{1}{2}r_{ij}^2$$

so solution also applies to unitary gas! Y. Castin, Comptes Rendus Physique 5, 407 (2004).

IN THE MACROSCOPIC LIMIT

$$\psi(ec{X},t) = rac{e^{-i heta(t)}}{\lambda^{3N/2}} \exp\left[rac{im\dot{\lambda}}{2\hbar\lambda}X^2
ight]\psi_0(ec{X}/\lambda)$$

density $ ho(ec{r},t)= ho_0(ec{r}/\lambda)/\lambda^3$	velocity field $ec{v}(ec{r},t)=ec{r}\dot{\lambda}/\lambda$
$egin{array}{llllllllllllllllllllllllllllllllllll$	pressure $P(ec{r},t)=P_0(ec{r}/\lambda)/\lambda^5$
local entropy per particle	$s(ec{r},t)=s_0(ec{r}/\lambda)$

This has to solve the hydrodynamic equations for a normal gas. Entropy production equation:

$$egin{aligned} \partial k_B T (\partial_t s + ec v \cdot ec
abla s) &= ec
abla \cdot (\kappa
abla T) + egin{pmatrix} egin{pmatrix} ec ec
abla \cdot ec v_i \ + ec v_i &= ec v_i \ ec v_i \ ec v_i &= ec v_i \ ec v_i$$

so the bulk viscosity is zero: $\zeta(\rho, T) = 0 \ \forall T > T_c$. Reproduces the conformal invariance result of Son (2007).

LADDER STRUCTURE OF THE SPECTRUM

• Infinitesimal change of ω for $0 < t < t_f$. For $t > t_f$: $\lambda(t) - 1 = \epsilon \ e^{-2i\omega t} + \epsilon^* \ e^{2i\omega t} + O(\epsilon^2)$

so an udamped mode of frequency 2ω .

• Corresponding wavefunction change:

$$egin{aligned} \psi(ec{X},t) &= \left[e^{-iEt/\hbar} - \epsilon e^{-i(E+2\hbar\omega)t/\hbar}L_+
ight. \ &+ \epsilon^* e^{-i(E-2\hbar\omega)t/\hbar}L_-
ight] \psi_0(ec{X}) + O(\epsilon^2) \end{aligned}$$

• Raising and lowering operators:

$$L_{\pm} = \pm i iggl[rac{3N}{2i} - i ec{X} \cdot \partial_{ec{X}} iggr] + rac{H}{\hbar \omega} - m \omega X^2 / \hbar$$

(in red, generator of scaling transform)

• Spectrum=collection of semi-infinite ladders of step $2\hbar\omega$. SO(2,1) hidden symmetry (Pitaevskii, Rosch, 1997).

LADDER STRUCTURE OF THE SPECTRUM (2)

A USEFUL MAPPING

- Each energy ladder has a ground step of energy E_g , eigenfunction ψ_g .
- Integration of $L_{-}\psi_{g} = 0$ gives, with $\vec{X} = X\vec{n}$:

$$\psi_g(ec{X}\,) = e^{-m\omega X^2/2\hbar}\, X^{E_g/(\hbar\omega)-3N/2}f(ec{n})$$

- Limit $\omega \to 0$: mapping to zero energy free space solutions. N.B.: $E_g/(\hbar\omega)$ is a constant.
- Free space problem solved for N = 3 (Efimov, 1972)... so trapped case also solved (Werner, Castin, 2006).

SEPARABILITY IN HYPERSPHERICAL COORDINATES

SEPARABILITY IN HYPERSPHERICAL COORDINATES Werner, Castin (2006)

- Use Jacobi coordinates to separate center of mass $ec{C}$
- Hyperspherical coordinates (arbitrary masses m_i):

$$(ec{r_1},\ldots,ec{r_N}) \leftrightarrow (ec{C},R,ec{\Omega})$$

with 3N - 4 hyperangles $\vec{\Omega}$ and the hyperradius

$$m_u R^2 = \sum_{i=1}^N m_i (ec{r_i} - ec{C}\,)^2$$

where m_u is a arbitrary mass unit.

• Hamiltonian is clearly separable:

$$H_{\mathrm{internal}} = -rac{\hbar^2}{2m_u} \left[\partial_R^2 + rac{3N-4}{R} \partial_R + rac{1}{R^2} \Delta_{ec{\Omega}}
ight] + rac{1}{2} m_u \omega^2 R^2$$

Do the contact conditions preserve separability ?

• For free space E=0, yes, due to scaling invariance: $\psi_{E=0}=R^{s_N-(3N-5)/2}\phi(ec\Omega).$

E = 0 Schrödinger's equation implies

$$\Delta_{ec{\Omega}} \phi(ec{\Omega}) = - \left[s_N^2 - \left(rac{3N-5}{2}
ight)^2
ight] \phi(ec{\Omega})$$

with contact conditions. $s_N^2 \in \text{discrete real set.}$

- For arbitrary E, Ansatz with E = 0 hyperrangular part obeys contact conditions $[R^2 = R^2(r_{ij} = 0) + O(r_{ij}^2)]$: $\psi = F(R)R^{-(3N-5)/2}\phi(\vec{\Omega})$
- Schrödinger's equation for a fictitious particle in 2D:

$$EF(R) = -rac{\hbar^2}{2m_u} \Delta_R^{2D} F(R) + \left[rac{\hbar^2 s_N^2}{2m_u R^2} + rac{1}{2} m_u \omega^2 R^2
ight] F(R)$$

SOLUTION OF HYPERRADIAL EQUATION $(N \ge 3)$

$$EF(R) = -rac{\hbar^2}{2m_u} \Delta_R^{2D} F(R) + \left[rac{\hbar^2 s^2}{2m_u R^2} + rac{1}{2} m_u \omega^2 R^2
ight] F(R)$$

- Which boundary condition for F(R) in R = 0? Wigner-Bethe-Peierls does not say.
- Key point: particular solutions $\sim R^{\pm s}$ for $R \to 0$.

s > 1	0 < s < 1	$s \in i \mathbb{R}^{+*}$
$F\sim R^s$	$F \sim (qR)^s \pm (qR)^{-s}$	$F \sim { m Im} \left[(qR)^s ight]$
0 bound st.	one bound st. if $-$	∞ nber of bound st.
$E_n = (2n + s)$	$E \propto -rac{\hbar^2 q^2}{m_u}:$	$ig E_n \propto -rac{\hbar^2 q^2}{m_u} e^{-2\pi n/ s },$
$(+1)\hbar\omega,n\geq 0$	N-body resonance	$n \in \mathbb{Z}: ext{Efimov effect}$

THE 4-BODY EFIMOV EFFECT

THREE-BODY EFIMOV EFFECT

• Efimov (1971): Three bosons, 1/a = 0, no dimer state. Then there exists an infinite number of trimer states, E = 0 accumulation point, geometric spectrum:

$$E_n^{(3)} \underset{n
ightarrow +\infty}{\sim} E_{ ext{ref}}^{(3)} e^{-2\pi n/|s_3|}$$

where purely imaginary $s_3 = i \times 1.00624$ solves transcendental equation, $E_{\text{ref}}^{(3)}$ depends on microscopic details.

• Efimov (1973): Solution for three arbitrary particles, 1/a = 0. E.g. Efimov trimers for two fermions (masse M, same spin state) and one impurity (masse m) if (Petrov, 2003)

$$\alpha \equiv \frac{M}{m} > \alpha_c(2;1) \simeq 13.607$$

with $s_3(\alpha) \in i\mathbb{R}^{+*}$ from known transcendental equation.

ARE THERE EFIMOVIAN TETRAMERS ?

$$E_n^{(4)} \sim \limits_{n o +\infty} E_{
m ref}^{(4)} e^{-2\pi n/|s_4|} \; ?$$

Negative results:

- Amado, Greenwood (1973): "There is No Efimov effect for Four or More Particles". Explanation: Case of bosons, there exist trimers, tetramers decay.
- Hammer, Platter (2007), von Stecher, D'Incao, Greene (2009), Deltuva (2010): The four-boson problem (here 1/a = 0) depends only on $E_{\rm ref}^{(3)}$, no $E_{\rm ref}^{(4)}$ to add.
- Key point: N = 3 Efimov effect breaks separability in hyperspherical coordinates for N = 4.

Idea: Consider three fermions (M) and one impurity (m).

REMINDER: MAIN POINTS OF GENERAL THEORY

• To find N-body Efimov effect, one simply needs to calculate the exponents s_N , that is to solve the Wigner-Bethe-Peierls model at zero energy:

$$\psi_{E=0}(\vec{r}_1,\ldots,\vec{r}_N) = R^{s_N - (3N-5)/2} \phi(\vec{\Omega})$$

- The N-body Efimov effect takes place if and only if one of the s_N^2 is < 0.
- General theory OK if $\Delta_{\vec{\Omega}}$ self-adjoint: no *n*-body Efimov effect $\forall n \leq N-1$.

THE 3 + 1 FERMIONIC PROBLEM (Castin, Mora, Pricoupenko, 2010)

- Three fermions (mass M, same spin state) and one impurity (mass m)
- General theory OK for a mass ratio

$$\alpha \equiv \frac{M}{m} < \alpha_c(2;1) \simeq 13.607$$

• Calculate E = 0 solution in momentum space. An integral equation for Fourier transform of A_{ij} :

$$0 = \left[\frac{1+2\alpha}{(1+\alpha)^2}(k_1^2+k_2^2) + \frac{2\alpha}{(1+\alpha)^2}\vec{k}_1\cdot\vec{k}_2\right]^{1/2}D(\vec{k}_1,\vec{k}_2) \\ + \int \frac{d^3k_3}{2\pi^2}\frac{D(\vec{k}_1,\vec{k}_3) + D(\vec{k}_3,\vec{k}_2)}{k_1^2+k_2^2+k_3^2 + \frac{2\alpha}{1+\alpha}(\vec{k}_1\cdot\vec{k}_2+\vec{k}_1\cdot\vec{k}_3+\vec{k}_2\cdot\vec{k}_3)}$$

 \bullet D has to obey fermionic symmetry.

REDUCTION OF THE INTEGRAL EQUATION Rotational invariance:

- D is the $m_l = 0$ component of a spinor of spin l: $\vec{D}(\vec{k}_1, \vec{k}_2) = {}^t \rho \, \vec{D}(\mathcal{R}\vec{k}_1, \mathcal{R}\vec{k}_2)$
- \bullet Clever choice of the rotation matrix \mathcal{R} :

$$ec{D}(ec{k}_1,ec{k}_2) = {}^t
ho \quad \underbrace{ec{D}[k_1ec{e}_x,k_2(\cos hetaec{e}_x+\sin hetaec{e}_y)]}_{2l+1 ext{ unknown functions } f_{m_l}^{(l)}(k_1,k_2, heta)}$$

Scaling invariance for E = 0:

 $egin{aligned} &f_{m_l}^{(l)}(k_1,k_2, heta)=(k_1^2+k_2^2)^{-(s_4+7/2)/2}(\cosh x)^{3/2}\Phi_{m_l}^{(l)}(x, heta) \end{aligned}$ with $x=\ln(k_2/k_1).$ The integral equation gives $M_{s_4}^{(l)}[ec{\Phi}^{(l)}]=0.$ $egin{aligned} &s_4 \ ext{allowed} & \Longleftrightarrow & M_{s_4}^{(l)} \ ext{has a zero eigenvalue} \end{aligned}$

RESULTS

- Numerical exploration up to l = 10
- Four-body Efimov effect obtained for a single s_4 , in channel l = 1 with even parity:

$$D(ec{k}_1,ec{k}_2) = ec{e}_z \cdot rac{ec{k}_1 imes ec{k}_2}{||ec{k}_1 imes ec{k}_2||} \, f_0^{(1)}(k_1,k_2, heta)$$

in the interval of mass ratio

 $\alpha_c(3;1) \simeq 13.384 < \alpha < \alpha_c(2;1) \simeq 13.607$

NUMERICAL VALUES OF $s_4 \in i\mathbb{R}$

EXPERIMENTAL ASPECTS

- Large scattering length with magnetic Feshbach resonance (Grimm, 2006; Hulet, 2009)
- Radio-frequency spectroscopy of trimers (Jochim, 2010)
- Remaining issue: Narrow interval of mass ratio.

Solution 1: The right mixture

- ⁴¹Ca and ³He^{*} have mass ratio $\alpha \simeq 13.58 \in [13.384, 13.607]$
- A priori, $|s_4| \simeq 0.75$ large enough to see two tetramer states
- ⁴¹Ca has same radioactivity as ²³⁹Pu (half-life 10⁵ years) Solution 2: Mass tuning
 - ${}^{40}\text{K}$ and ${}^{3}\text{He}^{*}$ have slightly-off mass ratio $\alpha \simeq 13.25$
 - Use optical lattice to tune effective mass (Petrov, Shlyapnikov, 2007)

MINLOS'S THEOREM (1995)

Theorem: In the n + 1 fermionic problem, the Wigner-Bethe-Peierls Hamiltonian is self-adjoint and bounded from below iff

$$(n-1)\frac{2\alpha(1+1/\alpha)^3}{\pi\sqrt{1+2\alpha}}\int_0^{\operatorname{asin}\frac{\alpha}{1+\alpha}}dt\,t\sin t<1.$$

- We expect that "not bounded from below" is equivalent to "with Efimov effect".
- Case n = 3: $\alpha_c^{\text{Minlos}} \simeq 5.29$ totally differs from ours...
- Case $\alpha = 1$: No stable unitary gas for n > 9...
- Weak point: Proof not included in Minlos' paper.
- Recent proof: Teta, Finco (2010). But we have found a hole in the proof. We can still hope that the macroscopic $\alpha = 1$ unitary gas is stable.