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• What is the unitary gas ?

• Simple facts from scaling invariance

• Time-dependent solution in a trap

• Separability in hyperspherical coordinates

• The 4-body Efimov effect



WHAT IS THE UNITARY GAS ?



DEFINITION OF THE UNITARY GAS

• Non-relativistic particles with s-wave binary interaction
with a two-body scattering amplitude

fk = − 1

ik
∀k

• “Maximally” interacting: Unitarity of S matrix imposes
|fk| ≤ 1/k.

• In real experiments with magnetic Feshbach resonance
(Thomas, Salomon, Jin, Ketterle, Grimm, . . .) :

− 1

fk
=

1

a
+ ik − 1

2
k2re + O(k4b3)

almost unitary if “infinite” scattering length a and “zero”
ranges:

ktyp|a| ≫ 1, ktyp|re| ≪ 1, ktypb ≪ 1.

• All these two-body conditions are only necessary.



THE ZERO-RANGE WIGNER-BETHE-PEIERLS MODEL

• Interactions are replaced by contact conditions.

• For rij → 0 with fixed ij-centroid ~Cij = (mi~ri+mj~rj)/(mi+
mj) different from ~rk, k 6= i, j:

ψ(~r1, . . . , ~rN) =

(

1

rij
− 1

a

)

Aij[~Cij; (~rk)k 6=i,j] + O(rij)

• Elsewhere, non interacting Schrödinger equation

Eψ( ~X) =

[

−
~
2

2m
∆ ~X

+
1

2
mω2X2

]

ψ( ~X)

with ~X = (~r1, . . . , ~rN).

• Exchange symmetry: Even for boson positions, odd for
same-spin fermion positions.

• Unitary gas exists iff Hamiltonian is self-adjoint.



SIMPLE FACTS FROM SCALING INVARIANCE



SCALING INVARIANCE OF CONTACT CONDITIONS

ψ( ~X) =
rij→0

1

rij
Aij[~Cij; (~rk)k 6=i,j] + O(rij)

• Domain of Hamiltonian is scaling invariant: If ψ obeys
the contact conditions, so does ψλ with

ψλ( ~X) ≡ 1

λ3N/2
ψ( ~X/λ)

• Consequences (also true for the ideal gas):

free space box (periodic b.c.) trap

∀N , no bound states(∗) PV = 2E/3 virial E = 2Eharm
(∗) If ψ of eigenenergy E, ψλ of eigenenergy E/λ2. Square integrable eigenfunctions

(after center of mass removal) correspond to point-like spectrum, for selfadjoint H.



USEFUL CONSTRAINTS FOR MONTE CARLO
[ξ = µ(T = 0)/EF ≤ 0, 41 (Carlson, 2009)]

Burovski, Prokof’ev, Svistunov, Troyer (2006), Tc/TF =
0.152(7); Goulko, Wingate (2010), Tc/TF = 0.173(6)
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TIME-DEPENDENT SOLUTION IN A TRAP



IN A TIME-DEPENDENT TRAP

• At t = 0 : static trap U(r) = mω2r2/2, system in eigen-

state ψ0( ~X) of energy E.

• For t > 0, arbitrary time dependence of trap spring
constant, ω(t). Known solution for ideal gas:

ψ( ~X, t) =
e−iθ(t)

λ3N/2(t)
exp

[

imλ̇

2~λ
X2

]

ψ0( ~X/λ(t))

with λ̈ = ω2λ−3 − ω2(t)λ and θ̇ = Eλ−2/~.

• This is a gauge plus scaling transform.

• The gauge transform also preserves contact conditions:

r2i + r2j = 2C2
ij +

1

2
r2ij

so solution also applies to unitary gas!

Y. Castin, Comptes Rendus Physique 5, 407 (2004).



IN THE MACROSCOPIC LIMIT

ψ( ~X, t) =
e−iθ(t)

λ3N/2
exp

[

imλ̇

2~λ
X2

]

ψ0( ~X/λ)

density ρ(~r, t) = ρ0(~r/λ)/λ3 velocity field ~v(~r, t) = ~r λ̇/λ

local temp. T (~r, t) = T/λ2 pressure P (~r, t) = P0(~r/λ)/λ5

local entropy per particle s(~r, t) = s0(~r/λ)

This has to solve the hydrodynamic equations for a normal
gas. Entropy production equation:

ρkBT (∂ts+ ~v · ~∇s) = ~∇ · (κ∇T ) + ζ(~∇ · ~v)2

+
η

2

∑

i,j

(

∂vi

∂xj
+
∂vj

∂xi
− 2

3
δij ~∇ · ~v

)2

so the bulk viscosity is zero: ζ(ρ, T ) = 0 ∀T > Tc. Repro-
duces the conformal invariance result of Son (2007).



LADDER STRUCTURE OF THE SPECTRUM

• Infinitesimal change of ω for 0 < t < tf . For t > tf :

λ(t) − 1 = ǫ e−2iωt + ǫ∗ e2iωt + O(ǫ2)

so an udamped mode of frequency 2ω.

• Corresponding wavefunction change:

ψ( ~X, t) =
[

e−iEt/~ − ǫe−i(E+2~ω)t/~L+

+ǫ∗e−i(E−2~ω)t/~L−
]

ψ0( ~X) + O(ǫ2)

• Raising and lowering operators:

L± = ±i
[
3N

2i
− i ~X · ∂ ~X

]

+
H

~ω
−mωX2/~

(in red, generator of scaling transform)

• Spectrum=collection of semi-infinite ladders of step 2~ω.
SO(2, 1) hidden symmetry (Pitaevskii, Rosch, 1997).



LADDER STRUCTURE OF THE SPECTRUM (2)
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A USEFUL MAPPING

• Each energy ladder has a ground step of energy Eg,
eigenfunction ψg.

• Integration of L−ψg = 0 gives, with ~X = X~n:

ψg( ~X ) = e−mωX2/2~XEg/(~ω)−3N/2f(~n)

• Limit ω → 0 : mapping to zero energy free space solu-
tions. N.B.: Eg/(~ω) is a constant.

• Free space problem solved for N = 3 (Efimov, 1972)...
so trapped case also solved (Werner, Castin, 2006).



SEPARABILITY IN HYPERSPHERICAL COORDINATES



SEPARABILITY IN HYPERSPHERICAL COORDINATES
Werner, Castin (2006)

• Use Jacobi coordinates to separate center of mass ~C

• Hyperspherical coordinates (arbitrary masses mi):

(~r1, . . . , ~rN) ↔ (~C,R, ~Ω )

with 3N − 4 hyperangles ~Ω and the hyperradius

muR
2 =

N∑

i=1

mi(~ri − ~C )2

where mu is a arbitrary mass unit.

• Hamiltonian is clearly separable:

Hinternal = − ~
2

2mu

[

∂2
R +

3N − 4

R
∂R +

1

R2
∆~Ω

]

+
1

2
muω

2R2



Do the contact conditions preserve separability ?

• For free space E = 0, yes, due to scaling invariance:

ψE=0 = RsN−(3N−5)/2φ(~Ω).

E = 0 Schrödinger’s equation implies

∆~Ω
φ(~Ω) = −

[

s2N −
(

3N − 5

2

)2
]

φ(~Ω)

with contact conditions. s2N ∈ discrete real set.

• For arbitrary E, Ansatz with E = 0 hyperrangular part
obeys contact conditions [R2 = R2(rij = 0) + O(r2ij)]:

ψ = F (R)R−(3N−5)/2φ(~Ω)

• Schrödinger’s equation for a fictitious particle in 2D:

EF (R) = − ~
2

2mu
∆2D
R F (R)+

[

~
2s2N

2muR2
+

1

2
muω

2R2

]

F (R)



SOLUTION OF HYPERRADIAL EQUATION (N ≥ 3)

EF (R) = − ~
2

2mu
∆2D
R F (R) +

[

~
2s2

2muR2
+

1

2
muω

2R2

]

F (R)

• Which boundary condition for F (R) in R = 0? Wigner-
Bethe-Peierls does not say.

• Key point: particular solutions ∼ R±s for R → 0.

s > 1 0 < s < 1 s ∈ iR+∗

F ∼ Rs F ∼ (qR)s ± (qR)−s F ∼ Im [(qR)s]
0 bound st. one bound st. if − ∞ nber of bound st.

En = (2n+ s E ∝ −~
2q2

mu
: En ∝ −~

2q2

mu
e−2πn/|s|,

+1)~ω, n ≥ 0 N -body resonance n ∈ Z : Efimov effect



THE 4-BODY EFIMOV EFFECT



THREE-BODY EFIMOV EFFECT

• Efimov (1971): Three bosons, 1/a = 0, no dimer state.
Then there exists an infinite number of trimer states,
E = 0 accumulation point, geometric spectrum:

E
(3)
n ∼

n→+∞
E

(3)
ref e

−2πn/|s3|

where purely imaginary s3 = i×1.00624 solves transcen-

dental equation, E
(3)
ref depends on microscopic details.

• Efimov (1973): Solution for three arbitrary particles,
1/a = 0. E.g. Efimov trimers for two fermions (masse
M , same spin state) and one impurity (masse m) if
(Petrov, 2003)

α ≡ M

m
> αc(2; 1) ≃ 13.607

with s3(α) ∈ iR+∗ from known transcendental equation.



ARE THERE EFIMOVIAN TETRAMERS ?

E
(4)
n ∼

n→+∞
E

(4)
ref e

−2πn/|s4| ?

Negative results:

• Amado, Greenwood (1973): “There is No Efimov ef-
fect for Four or More Particles”. Explanation: Case of
bosons, there exist trimers, tetramers decay.

• Hammer, Platter (2007), von Stecher, D’Incao, Greene
(2009), Deltuva (2010): The four-boson problem (here

1/a = 0) depends only on E
(3)
ref , no E

(4)
ref to add.

• Key point: N = 3 Efimov effect breaks separability in
hyperspherical coordinates for N = 4.

Idea: Consider three fermions (M) and one impurity (m).



REMINDER: MAIN POINTS OF GENERAL THEORY

• To find N -body Efimov effect, one simply needs to cal-
culate the exponents sN , that is to solve the Wigner-
Bethe-Peierls model at zero energy:

ψE=0(~r1, . . . , ~rN) = RsN−(3N−5)/2φ(~Ω)

• The N -body Efimov effect takes place if and only if one
of the s2N is < 0.

• General theory OK if ∆~Ω
self-adjoint: no n-body Efimov

effect ∀n ≤ N − 1.



THE 3 + 1 FERMIONIC PROBLEM
(Castin, Mora, Pricoupenko, 2010)

• Three fermions (mass M , same spin state) and one im-
purity (mass m)

• General theory OK for a mass ratio

α ≡
M

m
< αc(2; 1) ≃ 13.607

• Calculate E = 0 solution in momentum space. An inte-
gral equation for Fourier transform of Aij:

0 =

[
1 + 2α

(1 + α)2
(k2

1 + k2
2) +

2α

(1 + α)2
~k1 · ~k2

]1/2

D(~k1, ~k2)

+

∫
d3k3

2π2

D(~k1, ~k3) +D(~k3, ~k2)

k2
1 + k2

2 + k2
3 + 2α

1+α(~k1 · ~k2 + ~k1 · ~k3 + ~k2 · ~k3)

•D has to obey fermionic symmetry.



REDUCTION OF THE INTEGRAL EQUATION
Rotational invariance:

•D is the ml = 0 component of a spinor of spin l:

~D(~k1, ~k2) = tρ ~D(R~k1,R~k2)

• Clever choice of the rotation matrix R:

~D(~k1, ~k2) = tρ ~D[k1~ex, k2(cos θ~ex + sin θ~ey)]
︸ ︷︷ ︸

2l+1 unknown functions f (l)
ml

(k1,k2,θ)

Scaling invariance for E = 0:

f
(l)
ml

(k1, k2, θ) = (k2
1 + k2

2)
−(s4+7/2)/2(coshx)3/2Φ

(l)
ml

(x, θ)

with x = ln(k2/k1).

The integral equation gives M
(l)
s4 [~Φ(l)] = 0.

s4 allowed ⇐⇒ M
(l)
s4 has a zero eigenvalue



RESULTS

• Numerical exploration up to l = 10

• Four-body Efimov effect obtained for a single s4, in chan-
nel l = 1 with even parity:

D(~k1, ~k2) = ~ez ·
~k1 × ~k2

||~k1 × ~k2||
f

(1)
0 (k1, k2, θ)

in the interval of mass ratio

αc(3; 1) ≃ 13.384 < α < αc(2; 1) ≃ 13.607



NUMERICAL VALUES OF s4 ∈ iR
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EXPERIMENTAL ASPECTS

• Large scattering length with magnetic Feshbach reso-
nance (Grimm, 2006; Hulet, 2009)

• Radio-frequency spectroscopy of trimers (Jochim, 2010)

• Remaining issue: Narrow interval of mass ratio.

Solution 1: The right mixture

•
41Ca and 3He∗ have mass ratio α ≃ 13.58 ∈ [13.384, 13.607]

• A priori, |s4| ≃ 0.75 large enough to see two tetramer
states

•
41Ca has same radioactivity as 239Pu (half-life 105 years)

Solution 2: Mass tuning

•
40K and 3He∗ have slightly-off mass ratio α ≃ 13.25

• Use optical lattice to tune effective mass (Petrov, Shlyap-
nikov, 2007)



MINLOS’S THEOREM (1995)
Theorem: In the n + 1 fermionic problem, the Wigner-

Bethe-Peierls Hamiltonian is self-adjoint and bounded from

below iff

(n− 1)
2α(1 + 1/α)3

π
√

1 + 2α

∫ asin α
1+α

0
dt t sin t < 1.

• We expect that “not bounded from below” is equivalent
to “with Efimov effect”.

• Case n = 3: αMinlos
c ≃ 5.29 totally differs from ours...

• Case α = 1: No stable unitary gas for n > 9...

• Weak point: Proof not included in Minlos’ paper.

• Recent proof: Teta, Finco (2010). But we have found a
hole in the proof. We can still hope that the macroscopic
α = 1 unitary gas is stable.


