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What options exist out there? 

Goal: 

 

Describe accurately the time-dependent 

evolution of an externally perturbed Fermi 

superfluid at T=0 



 

One option is the two-fluid hydrodynamics (here at T=0) 

 

N.B. There is no quantum statistics in two-fluid hydrodynamics 

Troubles:    

 These are classical equations, no Planck’s constant,  thus 

no quantized vortices (unless one imposes by hand quantization) 

 No physically clear physical mechanism to describe superfluid  

to normal transition (no role for the critical velocity) 
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Two-fluid hydrodynamics + quantization  

is the Bohr model of a superfluid  



Another option is the phenomenological Ginzburg-Landau model  

(or the Gross-Pitaevskii equation, near T=0, only for bosons really):  
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Troubles: 

 Even though is a quantum approach, it describes only the 

superfluid phase 

 Only for temperatures near and below the critical 

temperature (or at T=0 for GP equation) 

 There is Cooper pair breaking mechanism 



There are a number of modes, such as the so called Higgs mode, 

which cannot be describes in either of these phenomenological  

approaches. 

Other issues: 



Energy of a Fermi system as a function of the pairing gap 
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“Landau-Ginzburg” equation Two-fluid hydrodynamics 



Bulgac and Yoon, Phys. Rev. Lett.  102, 085302 (2009) 

Response of a unitary Fermi system to changing  
the scattering length with time 

• All these modes have a very low frequency below the pairing gap, 
a very large amplitude and very large excitation energy 
 
• None of these modes can be described either within two-fluid hydrodynamics 
or Landau-Ginzburg like approaches 



Outline: 

 

 What is a unitary gas? 

 DFT extension to superfluid systems and its further 

extension to time-dependent phenomena 

 The birth and life of vortices in a unitary Fermi gas  

in real time, superfluid to normal transformation, vortex  

reconnection and onset of quantum turbulence  



One reason:  

 
(for the nerds, I mean the hard-core theorists,  

                            not  for the phenomenologists)  

Bertsch’s Many-Body X challenge, Seattle, 1999 

Why would one want to study a unitary gas? 

What are the ground state properties of the many-body system 

composed of spin ½ fermions interacting via a zero-range, infinite 

scattering-length contact interaction.  



What are the scattering length and the effective range? 
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If the energy is small only the s-wave  is relevant. 



Let us consider a very old and simple example:  

                                                      the hydrogen atom. 

 

The ground state energy could only be a function of: 

 

   Electron charge 

   Electron mass 

   Planck’s constant 

 

and then trivial dimensional arguments lead to 

 

 

 

 

 

 

Only the factor ½ requires some hard work. 
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Let us turn now to dilute fermion matter 

The ground state energy is given by a function: 

0( , , , , , )gsE f N V m a r

Taking the scattering length to infinity and the range   

of the interaction to zero, we are left with: 
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Solid line with open circles – Chang et al. PRA, 70, 043602 (2004) 

Dashed line with squares  - Astrakharchik et al. PRL 93, 200404 (2004) 

BEC side BCS side 
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Fixed node GFMC results:   S.-Y. Chang et al. PRA 70, 043602 (2004) 



Zwierlein et al. Nature 435, 1047 (2005) 



How to treat inhomogeneous systems! 
 

 

• Monte Carlo  (feasible for small particle numbers only) 

     

• Density Functional Theory  (large particle numbers) 

 

One needs: 

   1) to find an Energy Density Functional  (EDF)  

   2) to extend DFT to superfluid phenomena (SLDA) 

   3) to extend SLDA to time-dependent phenomena 
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Universal functional of  particle density alone 
Independent of external potential 

Kohn-Sham theorem 

Injective map 
(one-to-one) 

Normal Fermi systems only! 



   However, not everyone is normal! 



   Dilute atomic Fermi gases                   Tc   10-9 eV  

 
   Liquid  3He                                             Tc    10-7 eV 

 
   Metals, composite materials                Tc  10-3 – 10-2 eV 

 
   Nuclei, neutron stars                            Tc  105 – 106 eV 

 
•   QCD color superconductivity                Tc  107 – 108 eV  

 

Superconductivity and superfluidity in Fermi systems 

 units (1 eV  104 K)  
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Superfluid LDA  (SLDA)  

Extension of Kohn-Sham approach  (LDA) to superfluid Fermi systems    

There is a little problem! The pairing field  diverges.  

Mean-field and pairing field are both local fields! 

(for the sake of simplicity spin degrees of freedom are not shown) 
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Position and momentum dependent running coupling constant 

Observables are (obviously) independent of cut-off energy (when chosen properly). 

The SLDA (renormalized) equations 



 
   










   

 

 
    
  

  




  

  

 



2 2/3 5/3

22

k k
0 0

*

k k
0

2
2 2/3 2/3

2/3

( ) 3(3 ) ( )
( ) ( ) ( )

2 5

( ) 2 v ( ) ,   ( ) 2 v ( ) ,    

( ) u ( )v ( )

( )(3 ) ( )
( ) ( )

2 3 ( )
( ) (

k c k c

c

c
c

c
E E E E

c
E E

ext

eff

r n r
r r r

n r r r r

r r r

rn r
U r V r

n r
r g r ) ( )

c
r

The SLDA (DFT) energy density functional at unitarity 
for equal numbers of spin-up and spin-down fermions  

Only this combination is cutoff independent  

 can take any positive value,  
but the best results are obtained when  is fixed by the qp-spectrum 



Fermions at unitarity in a harmonic trap 
Total energies E(N) 

GFMC     - Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007) 
FN-DMC - von Stecher, Greene and Blume, PRL 99, 233201 (2007)  
                                                                               PRA 76, 053613 (2007) 

Bulgac, PRA  76, 040502(R) (2007) 



Bulgac, PRA  76, 040502(R) (2007) 

GFMC     - Chang and Bertsch, Phys. Rev. A 76, 021603(R) (2007) 
FN-DMC - von Stecher, Greene and Blume, PRL 99, 233201 (2007)  
                                                                               PRA 76, 053613 (2007) 
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Fermions at unitarity in a harmonic trap 
Pairing gaps 



solid/dotted blue line        - SLDA, homogeneous GFMC due to Carlson et al  

red circles                          - GFMC due to Carlson and Reddy  

dashed blue line                - SLDA, homogeneous MC due to Juillet 

black dashed-dotted line – meanfield at unitarity   

Quasiparticle spectrum in homogeneous matter 

Bulgac, PRA  76, 040502(R) (2007) 

NB! In DFT one does not try to reproduce the single-particle spectrum ( 
only the Fermi level) 



Bulgac, Forbes, and Magierski, arXiv:1008:3933 



EOS for spin polarized systems 
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Black line:       normal part of the energy density   

Blue points:    DMC calculations for normal state, Lobo et al, PRL 97, 200403 (2006) 

Gray crosses:  experimental EOS due to Shin, Phys. Rev. A 77, 041603(R) (2008) 

Bulgac and Forbes,  

Phys. Rev. Lett.  101, 215301 (2008) 

Red line: Larkin-Ovchinnikov phase (unitary Fermi supersolid) 



Formalism for Time-Dependent Phenomena  

“The time-dependent density functional theory is viewed in general as a 

reformulation of the exact quantum mechanical time evolution of a many-body 

system when only one-body properties are considered.”                

A.K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973) 

V. Peuckert, J. Phys. C 11, 4945 (1978)  

E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) 

 

http://www.tddft.org 
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For time-dependent phenomena one has to add currents. 

Galilean invariance determines the dependence on currents. 



Full 3D implementation of TD-SLDA is a petaflop problem  

and it has been completed. 

Bulgac and Roche,  J. Phys. Conf. Series 125, 012064 (2008) 
 



TDSLDA  

(equations  look like TDHFB/TDBdG) 
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• The system is placed on a 3D spatial lattice 

• Derivatives are computed with FFTW 

• Fully self-consistent treatment with Galilean invariance 

• No symmetry restrictions 

• Number of quasiparticle wave functions is of the order of the number of spatial  

  lattice points 

• Initial state is the ground state of the SLDA  (formally like HFB/BdG) 

• The code was implemented on JaguarPf  (NCCS), Franklin (NERSC),  

Athena (UW), and Hyak (UW) 



From Giorgini, Pitaevskii and Stringari,  

Rev. Mod. Phys., 80, 1215 (2008) 

 

Study based on BCS/Leggett approximation 

Critical velocity in a unitary gas 
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Miller et al. (MIT, 2007) 
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Density cut through a stirred unitary Fermi gas at various times. 



Profile of the pairing gap of a stirred unitary Fermi gas at various times. 






