

(Biased) Theory Overview: Few-Body Physics

Doerte Blume

Dept. of Physics and Astronomy, Washington State University, Pullman. With graduate students Kevin M. Daily and Debraj Rakshit.

Supported by NSF and ARO.

Few-Body Physics and Cold Atomic Gases

Three experimental realizations:

Optical lattice: Few atoms per site.

- **Repulsively bound pairs (Innsbruck).**
- **Effective many-body interactions (Bloch group).**

Macroscopic sample: Likelihood of finding 2, 3, 4,… particles close together.

- **Losses from trap due to two-body, three-body and four-body processes.**
- **Three-body Efimov effect (next talk by Selim Jochim).**
- **Four-body Efimov physics.**

Microtrap: Controllable number of atoms (2, 3,…).

• **Next talk.**

Two-Body System with s-Wave Interactions

Free space:

No low-energy s-wave bound state for negative a_s . **One low-energy s-wave bound**

state for positive as.

External spherically symmetric confinement (Busch et al., Found. of Phys. (1998)): Quantization of scattering continuum.

Add a 3rd Particle in Free Space: What Happens Depends on Symmetry…

- **FFF' (same isotope but two different internal hyperfine states):**
	- **No low-energy three-body bound state.**
- **FFX (X=boson or fermion (heavier or lighter than F)):**
	- **as>0 and L**Π**=1**−**: Universal low-energy bound state(s) for 8.172<**κ **<13.607.**
	- **Large |as| and L**Π**=1**−**: Three-body resonances can exist for 8.619<**κ **<13.607.**
	- **Large |as| and L**Π**=1**−**: Efimov effect for** κ**>13.607.**
- **FF'F'' (same isotope but three different internal hyperfine states):**
	- All three $|a_{s}|$ large and L^{II}=0⁺: Efimov effect (next talk).
- **BBB:**
	- **|as| large and L**Π**=0**+**: Efimov effect.**

References: Braaten and Hammer, Phys. Rep. 428, 259 (2006); Efimov, Yad. Fiz. 12, 1080 (1970); Nucl. Phys. A 210, 157 (1973). D'Incao and Esry, PRA 73, 030702 (2006) and follow-up work. Petrov, PRA 67, 010703(R) (2003). Nishida, Tan, and Son, PRL 100, 090405 (2008). Werner and Castin, PRA 74, 053604 (2006). Kartavtsev and Malykh, JPB 40, 1429 (2007)....

Three-Body System with Infinitely Large Scattering Length

- **Wave function separates (like that of the NI system) into hyperangular and hyperradial coordinates:** $\Psi_{rel} = \mathbf{R}^{-5/2}$ **F(R)** $\Phi(\Omega)$.
- **Eigenvalues of hyperangular Schrödinger equation provide effective potentials for hyperradial coordinate R.**
- **Two linearly independent hyperradial solutions:** $f(R) \rightarrow R^{s+1/2}$ as $R \rightarrow 0$. **g(R)**→**R**−**s+1/2 as R**→**0.**
- s>1: eliminate g (a_s describes everything).
- **0<s<1: need f and g (ratio determined by three-body scattering parameter; three-body phase shift of** π**/2 corresponds to a divergent three-body "scattering length" (new bound state)).**
- **s purely imaginary: Efimov effect (discrete scale invariance; infinitely many geometrically spaced 3-body bound states).**

Application to FFX System with Infinitely Large Scattering Length

Trapped FFX System with LΠ**=1- at Unitarity**

Calculations employ a purely attractive Gaussian potential between FX pairs with range r0. See Blume and Daily, PRL 105, 170403; PRA 82, 063612.

Energies for Trapped FFX System with LΠ**=1- at Unitarity**

Black symbols: Stochastic variational energies for finiterange Gaussian extrapolated to $r_0=0$.

Away from κ≈**12.313 (or s**≈**1/2), extrapolated FR energies** agree well with E_f.

Effective three-body interaction: F(R)~ $f(R)$ −tan[$\delta_{3b}(k)$]g(R). **3-body resonance= phase shift of** π**/2.**

Higher-Body Resonances?

κ**=10.5** $\rm{E_{rel}}$ / $\rm{E_{ho}}$ κ**=10.6** $-2\frac{L}{0}$ $0.02 \quad 0.03 \quad 0.04 \quad 0.05$ 0.01 $\overline{0.06}$ r_0 / a_{ho}

Four-body resonance!

Calculations are performed for twobody Gaussian model potential.

FFFX system with L^Π=**1+: Work by Gandolfi and Carlson (arXiv:1006.5186): 3-, 4-, 5-body resonance but no (N>5) resonance.**

Implications?

- **Collapse…**
- **If trimers or tetramers are stable, we have a system with competing two- and three- or two- and fourbody interactions.**
- **Large finite-range effects.**

Efimov Effect: 1/R2 Hyperradial Potential Curve with Imaginary s

- **FFX system with** κ**>13.607 (s determined by** κ**).**
	- **F(R)**→**R1/2 sin[Im(s)log(kR)+**θ**];** θ **three-body phase.**
	- **En+1/En**=**exp[**−**2**π**/Im(s)]**
	- **Most naïve verification scheme requires observation of two features** ⇒ **larger s is "better".**
- **Other systems?**
	- **Change symmetry: FF'F'' and BBB: Im(s)=1.00624.**
	- **Change interactions: BBB system with dipole-dipole interactions (Wang, D'Incao and Greene, arXiv:1103.1406).**
	- **Change number of particles:**
		- **FFFX: Four-body Efimov effect for 13.384<**κ**<13.607 (Castin, Mora and Pricoupenko, PRL 105, 223201 (2010)).**
		- **BBBB: Two four-body states "tagged on" to each Efimov trimer.**

Extended Efimov Scenario for Three- and Four-Boson Systems "usual" (requires

Theoretical prediction:
 Large as range)
 Two Tetra bound states large as range) **Two Tetra bound states [Platter et al., PRA 70, 052101 (2004); Hammer et al., Eur. Phys. J. A 32, 113 (2007)]**

 $a_{\text{Tetra1}} \approx 0.43 a_{\text{Trimer}}$ $a_{\text{Tetra2}} \approx 0.9a_{\text{Trimer}}$ **[von Stecher, D'Incao, Greene, Nature Physics 5, 417 (2009)]**

0.43 in agreement with 0.442 by Hanna, Blume [PRA 74, 063604 (2006)]

Experiment: Enhanced losses…

Measurement of Loss Rate for Non-Degenerate Bosonic 133Cs Sample

First measurement of universal 4-body physics (probe of Efimov physics).

Figure from Ferlaino et al., PRL 102, 140401 (2009)

Other experiments: Pollack et al., Zaccanti et al.,…

Return to Equal-Mass Fermions: Harmonically Trapped 3-Body System

N=3 spectrum for zero-range Few-body spectra determine interactions [calculated following Kestner and Duan, PRA 76, 033611 (2007)]:

"high-T" thermodynamics:

Start with grand partition function: $Z = Tr[-(H-\mu N)/(k_{B}T)]$

Perform cluster expansion: $Z = 1 + Q_1 z + Q_2 z^2 + ...$

where $Q_n = Tr_n[exp(-H_n/(k_B T))]$; fugacity $z = \exp[\mu/(k_{\rm B}T)]$ << 1.

Thermodynamic potential Ω**:** Ω = - $k_{\rm B}T$ ln(Z) $\Omega = -k_B T Q_1 (z + b_2 z^2 + b_3 z^3 + ...)$ $b_i = b_i(Q_1, ..., Q_i)$

Virial Expansion for Fermi Gas Based on Two- and Three-Fermion Spectra

Experiment (Nascimbene et al.): Δb_3 **(hom)=−0.35(2) [theory −0.355]** and Δb_4 (hom)=0.096(15) [no theoretical prediction].

Earlier theory work: Ho and Mueller, Rupak,… Other experiments: Horikoshi et al., Zwierlein group,…

6Li-40K Mixture: What Does Virial Expansion Predict?

Few-Body Systems as a Benchmark

- **This is the last week of "Fermions from Cold Atoms to Neutron Stars: Benchmarking the Many-Body Problem" program.**
- **One approach: Bottom-up…**
	- **"Exact" results are obtainable for small N.**
	- **Approximations/techniques can be validated.**
- **For example:**
	- **Many of the Tan relations hold for trapped and homogeneous, and small and large systems: Precision benchmark through basis set expansion calculations for equal-mass four-fermion system (Blume and Daily, PRA 80, 053626 (2009)).**
	- **Equation of state for trapped two-component Fermi gas as T=0…**

FN-DMC and "Exact" Basis Set Calculations: Structural Properties

Pair distribution function for up-down distance at unitarity:

N1−**N2**=**0,1: Energy of Trapped Two-Component Fermi Gas at Unitarity**

Even-odd oscillations. Essentially no shell structure.

Blume, von Stecher, Greene, PRL 99, 233201 (2007).

Local density approximation (even N): $E_{00}(N) = \sqrt{\xi}E_{NI}$ $E_{fit}(N) = \sqrt{\xi_{tr}} E_{NI,ETF}$

We find: ξ**tr=0.467. For comparison:** ξ**hom=0.383(1) (Forbes et al., arXiv:1011.2197)**

Summary

• **A first glance at selected few-body problems:**

- **Few-body states whose properties are determined by just one or two parameters.**
- **High-T thermodynamics.**
- **Benchmark of different analytical and numerical approaches and, in some cases, of the many-body problem.**
- **Experimentally accessible.**
- **Future looks bright.**