

(Biased) Theory Overview: Few-Body Physics

Doerte Blume

Dept. of Physics and Astronomy, Washington State University, Pullman. With graduate students Kevin M. Daily and Debraj Rakshit.

Supported by NSF and ARO.

Few-Body Physics and Cold Atomic Gases

Three experimental realizations:

Optical lattice: Few atoms per site.

- Repulsively bound pairs (Innsbruck).
- Effective many-body interactions (Bloch group).

Macroscopic sample: Likelihood of finding 2, 3, 4,... particles close together.

- Losses from trap due to two-body, three-body and four-body processes.
- Three-body Efimov effect (next talk by Selim Jochim).
- Four-body Efimov physics.

Microtrap: Controllable number of atoms (2, 3,...).

Next talk.

Two-Body System with s-Wave Interactions

Free space:

No low-energy s-wave bound state for negative a_s . One low-energy s-wave bound

state for positive a_s.

External spherically symmetric confinement (Busch et al., Found. of Phys. (1998)): Quantization of scattering continuum.

Add a 3rd Particle in Free Space: What Happens Depends on Symmetry...

- FFF' (same isotope but two different internal hyperfine states):
 - No low-energy three-body bound state.
- FFX (X=boson or fermion (heavier or lighter than F)):
 - a_s>0 and L^Π=1⁻: Universal low-energy bound state(s) for 8.172<κ
 <13.607.
 - Large |a_s| and L^Π=1⁻: Three-body resonances can exist for 8.619<κ
 <13.607.
 - Large $|a_s|$ and L^{II}=1⁻: Efimov effect for κ >13.607.
- FF'F" (same isotope but three different internal hyperfine states):
 - All three $|a_s|$ large and L^{II}=0⁺: Efimov effect (next talk).
- BBB:
 - |a_s| large and L^Π=0⁺: Efimov effect.

References: Braaten and Hammer, Phys. Rep. 428, 259 (2006); Efimov, Yad. Fiz. 12, 1080 (1970); Nucl. Phys. A 210, 157 (1973). D'Incao and Esry, PRA 73, 030702 (2006) and follow-up work. Petrov, PRA 67, 010703(R) (2003). Nishida, Tan, and Son, PRL 100, 090405 (2008). Werner and Castin, PRA 74, 053604 (2006). Kartavtsev and Malykh, JPB 40, 1429 (2007)....

Three-Body System with Infinitely Large Scattering Length

- Wave function separates (like that of the NI system) into hyperangular and hyperradial coordinates: $\Psi_{rel} = R^{-5/2} F(R) \Phi(\Omega)$.
- Eigenvalues of hyperangular Schrödinger equation provide effective potentials for hyperradial coordinate R.
- Two linearly independent hyperradial solutions: f(R)→R^{s+1/2} as R→0. g(R)→R^{-s+1/2} as R→0.
- s>1: eliminate g (a_s describes everything).
- **0<s<1:** need f and g (ratio determined by three-body scattering parameter; three-body phase shift of $\pi/2$ corresponds to a divergent three-body "scattering length" (new bound state)).
- s purely imaginary: Efimov effect (discrete scale invariance; infinitely many geometrically spaced 3-body bound states).

Application to FFX System with Infinitely Large Scattering Length

Trapped FFX System with $L^{\Pi}=1^{-}$ at Unitarity

Calculations employ a purely attractive Gaussian potential between FX pairs with range r₀. See Blume and Daily, PRL 105, 170403; PRA 82, 063612.

Energies for Trapped FFX System with L^{II}=1⁻ at Unitarity

Black symbols: Stochastic variational energies for finiterange Gaussian extrapolated to $r_0=0$.

Away from $\kappa \approx 12.313$ (or s $\approx 1/2$), extrapolated FR energies agree well with E_f.

15 Effective three-body interaction: F(R)~ f(R)-tan[$\delta_{3b}(k)$]g(R). 3-body resonance= phase shift of π/2.

Higher-Body Resonances?

Four-body resonance!

Calculations are performed for twobody Gaussian model potential. Work by Gandolfi and Carlson (arXiv:1006.5186): 3-, 4-, 5-body resonance but no (N>5)resonance.

Implications?

- Collapse...
- If trimers or tetramers are stable, we have a system with competing two- and three- or two- and fourbody interactions.
- Large finite-range effects.

Efimov Effect: 1/R² Hyperradial Potential Curve with Imaginary s

- FFX system with κ >13.607 (s determined by κ).
 - $F(R) \rightarrow R^{1/2} \sin[Im(s)log(kR)+\theta]; \theta$ three-body phase.
 - Eⁿ⁺¹/Eⁿ=exp[-2π/Im(s)]
 - Most naïve verification scheme requires observation of two features ⇒ larger s is "better".
- Other systems?
 - Change symmetry: FF'F' and BBB: Im(s)=1.00624.
 - Change interactions: BBB system with dipole-dipole interactions (Wang, D'Incao and Greene, arXiv:1103.1406).
 - Change number of particles:
 - FFFX: Four-body Efimov effect for 13.384<κ<13.607 (Castin, Mora and Pricoupenko, PRL 105, 223201 (2010)).
 - BBBB: Two four-body states "tagged on" to each Efimov trimer.

Extended Efimov Scenario for Three- and Four-Boson Systems

Theoretical prediction: Two Tetra bound states [Platter et al., PRA 70, 052101 (2004); Hammer et al., Eur. Phys. J. A 32, 113 (2007)]

a_{Tetra1} ≈ 0.43a_{Trimer} a_{Tetra2} ≈ 0.9a_{Trimer} [von Stecher, D'Incao, Greene, Nature Physics 5, 417 (2009)]

0.43 in agreement with 0.442 by Hanna, Blume [PRA 74, 063604 (2006)]

Experiment: Enhanced losses...

Measurement of Loss Rate for Non-Degenerate Bosonic ¹³³Cs Sample

First measurement of universal 4-body physics (probe of Efimov physics).

Figure from Ferlaino et al., PRL 102, 140401 (2009)

Other experiments: Pollack et al., Zaccanti et al.,...

Return to Equal-Mass Fermions: Harmonically Trapped 3-Body System

N=3 spectrum for zero-range interactions [calculated following Kestner and Duan, PRA 76, 033611 (2007)]:

Few-body spectra determine "high-T" thermodynamics:

Start with grand partition function: $Z = Tr[-(H-\mu N)/(k_BT)]$

Perform cluster expansion: $Z = 1 + Q_1 z + Q_2 z^2 + ...$

where $Q_n = Tr_n[exp(-H_n/(k_BT))];$ fugacity z = exp[$\mu/(k_BT)$] << 1.

Thermodynamic potential Ω : $\Omega = -k_B T \ln(Z)$ $\Omega = -k_B T Q_1 (z + b_2 z^2 + b_3 z^3 + ...)$ $b_i = b_i(Q_1,...,Q_i)$

Virial Expansion for Fermi Gas Based on Two- and Three-Fermion Spectra

Experiment (Nascimbene et al.): $\Delta b_3(hom) = -0.35(2)$ [theory -0.355] and $\Delta b_4(hom) = 0.096(15)$ [no theoretical prediction].

Earlier theory work: Ho and Mueller, Rupak,... Other experiments: Horikoshi et al., Zwierlein group,...

⁶Li-⁴⁰K Mixture: What Does Virial Expansion Predict?

Few-Body Systems as a Benchmark

- This is the last week of "Fermions from Cold Atoms to Neutron Stars: Benchmarking the Many-Body Problem" program.
- One approach: Bottom-up...
 - "Exact" results are obtainable for small N.
 - Approximations/techniques can be validated.
- For example:
 - Many of the Tan relations hold for trapped and homogeneous, and small and large systems: Precision benchmark through basis set expansion calculations for equal-mass four-fermion system (Blume and Daily, PRA 80, 053626 (2009)).
 - Equation of state for trapped two-component Fermi gas as T=0...

FN-DMC and "Exact" Basis Set Calculations: Structural Properties

Pair distribution function for up-down distance at unitarity:

N₁–N₂=0,1: Energy of Trapped Two-Component Fermi Gas at Unitarity

Even-odd oscillations. Essentially no shell structure. Blume, von Stecher, Greene, PRL 99, 233201 (2007).

Local density approximation (even N): $E_{00}(N) = \sqrt{\xi}E_{NI}$ $E_{fit}(N) = \sqrt{\xi_{tr}}E_{NI,ETF}$

We find: ξ_{tr} =0.467. For comparison: ξ_{hom} =0.383(1) (Forbes et al., arXiv:1011.2197)

Summary

• A first glance at selected few-body problems:

- Few-body states whose properties are determined by just one or two parameters.
- High-T thermodynamics.
- Benchmark of different analytical and numerical approaches and, in some cases, of the many-body problem.
- Experimentally accessible.
- Future looks bright.