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Few-Body Physics and Cold Atomic
Gases

Three experimental realizations:

Optical lattice: Few atoms per site.
* Repulsively bound pairs (Innsbruck).
- Effective many-body interactions (Bloch group).

Macroscopic sample: Likelihood of finding 2, 3, 4,...
particles close together.

* Losses from trap due to two-body, three-body and four-body
processes.

* Three-body Efimov effect (next talk by Selim Jochim).
* Four-body Efimov physics.

Microtrap: Controllable number of atoms (2, 3,...).
* Next talk.



Two-Body System with s-Wave

Interactions

Free space:

No low-energy s-wave bound state
for negative a..

One low-energy s-wave bound
state for positive a..

“BCS-
side”
(weak
attraction)

Ebin

external control parameter (B-field)

External spherically symmetric
confinement (Busch et al., Found. of
Phys. (1998)):

Quantization of scattering

continuum.
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Add a 3" Particle in Free Space: What
Happens Depends on Symmetry...

* FFF’ (same isotope but two different internal hyperfine states):
= No low-energy three-body bound state.

* FFX (X=boson or fermion (heavier or lighter than F)):
= a.>0 and L"=1-: Universal low-energy bound state(s) for 8.172<k
<13.607.
= Large |a;| and L"=1-: Three-body resonances can exist for 8.619<k
<13.607.

= Large |a,| and L"=1-: Efimov effect for «>13.607.

°* FF'F’ (same isotope but three different internal hyperfine states):
= All three |a | large and L"=0+*: Efimov effect (next talk).

° BBB:
= |a.| large and L!'=0*: Efimov effect.

References: Braaten and Hammer, Phys. Rep. 428, 259 (2006); Efimov, Yad. Fiz. 12, 1080 (1970); Nucl.
Phys. A 210, 157 (1973). D’Incao and Esry, PRA 73, 030702 (2006) and follow-up work. Petrov, PRA 67,
010703(R) (2003). Nishida, Tan, and Son, PRL 100, 090405 (2008). Werner and Castin, PRA 74, 053604
(2006). Kartavtsev and Malykh, JPB 40, 1429 (2007)....



Three-Body System with Infinitely

Large Scattering Length

* Wave function separates (like that of the NI system) into hyperangular
and hyperradial coordinates: ¥, = R~2 F(R) ®(Q).

rel

* Eigenvalues of hyperangular Schrodinger equation provide effective
potentials for hyperradial coordinate R.

* Two linearly independent hyperradial solutions:
f(R)—Rs*12 as R—0.
d(R)—R-s*12 as R—0.

* s>1: eliminate g (a, describes everything).

°* 0<s<1: need f and g (ratio determined by three-body scattering
parameter; three-body phase shift of n/2 corresponds to a divergent
three-body “scattering length” (new bound state)).

* s purely imaginary: Efimov effect (discrete scale invariance; infinitely
many geometrically spaced 3-body bound states).



Application to FFX System with

Infinitely LLarge Scattering Length

Experiments:
40K-SLj: k=~6.7
173Yb-5Li: k~28.8

87Sr-SLi: k=14.5

10

N

V(R) 1n osc. units

..1. ' ,_i._-—ﬂ'-—'*l I T

3 '\-\,\LH=3— l

2 \.\'\ -

1 ALH=1_ '\_\ -
\

O 1 | 1 .l 1 .

0 40 60 80

K

0
1/4 V(R) = h2(s2-1/4)/(2uR2)+
110 [L?Re2
0 I >

R 1n osc. units

-

s values obtained using
formalism developed by
Rittenhouse and Greene,
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symmetric
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Trapped FFX System with L"=1- at
Unitarity

Symbols: Stochastic
variational energies.
Red lines: Four to
+ _Ifive parameter fits.

1.5F
9 1 -1 Large FR
effects for x=12;
but small FR
0.5 effects for

k=12.313 (s=1/2)!

. - | , —Bound states!
001 0.02 0.03Diverge as r,?

1O / a110

Calculations employ a purely attractive Gaussian potential between FX

pairs with range r,. See Blume and Daily, PRL 105, 170403; PRA 82, 063612.




Energies for Trapped FFX System with
L =1 at Unitarit

E~(s+3)hv

— Black symbols:

‘ Stochastic variational

v _| energies for finite-
range Gaussian extra-

polated to r,=0.

Away from k=12.313
(or s=1/2), extra-
polated FR energies
-1 agree well with E..

0 'g 10 1 5 Effective three-body
<t

interaction:

F(R)~
f(R)-tan[o;,(k)1g(R).
3-body resonance=
phase shift of /2.

k=8.619  «=13.607



Higher-Body Resonances?

FFFX system with L1=1*;
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Four-body resonance!

Calculations are performed for two-
body Gaussian model potential.

Work by Gandolfi and Carlson
(arXiv:1006.5186): 3-, 4-, 5-body
resonance but no (N>5)-
resonance.

Implications?
= Collapse...
= |f trimers or tetramers are
stable, we have a system
with competing two- and
three- or two- and four-
body interactions.

= Large finite-range effects.



Efimov Effect: 1/R? Hyperradial
Potential C 4 | :

* FFX system with k>13.607 (s determined by x).
* F(R)—=R"2 sin[Im(s)log(kR)+0]; 6 three-body phase.
= Ent1/En=exp[-2n/Im(s)]
= Most naive verification scheme requires observation of two
features = larger s is “better”.

* Other systems?

= Change symmetry: FF’F”’ and BBB: Im(s)=1.00624.

= Change interactions: BBB system with dipole-dipole
interactions (Wang, D’Incao and Greene, arXiv:1103.1406).

= Change number of particles:

* FFFX: Four-body Efimov effect for 13.384<k<13.607 (Castin,
Mora and Pricoupenko, PRL 105, 223201 (2010)).

- BBBB: Two four-body states “tagged on” to each Efimov
trimer.



Extended Efimov Scenario for

Three- and Four-Boson Systems @@®®

Theoretical prediction: “usual” (requires

Two Tetra bound states large a, range) Figure from
[Platter et al., PRA 70, l l l Ferlaino et al.,
052101 (2004); Hammer et PRL 102, 140401
al., Eur. Phys. J. A 32, 113 (2009)

(2007)] a < Energy a>0

A+A+A+A 1/a
>

aTetra1 =~ 0'43aTrimer
aTetra2 =~ 0'gaTrimer
[von Stecher, D’Incao,

Greene, Nature
Physics 5, 417 (2009)]

0.43 in agreement with
0.442 by Hanna, Blume

[PRA 74, 063604 (2006)]
Tetral

Experiment:
Enhanced losses...




Measurement of Loss Rate for

Non-Degenerate Bosonic *3Cs Sample

First measurement of universal 4-body physics Figure from Ferlaino et al.,
(probe of Efimov physics). PRL 102, 140401 (2009)
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Other experiments: Pollack et al., Zaccanti et al.,...



Return to Equal-Mass Fermions: ttv

N=3 spectrum for zero-range | Few-body spectra determine

interactions [calculated following | “high-T” thermodynamics:
Kestner and Duan, PRA 76, 033611 (2007)]:

Or—— O \\\\\( Start with grand partition function:
L W (2 = Te-(H-pNY (kg T)]

’39 0'_ Perform cluster expansion:

88

Z=1+Qz+Q,z%+ ...

n

10 where Q= Tr [exp(-H /(kgT))];
| fugacity z = exp[u/(kgT)] << 1.
= 5
O Thermodynamic potential Q:
" 0 Q = -kgT In(Z)

Q = -kgT Q, (z + b,z? + b,Z3+...)
b, = bi(Q,,...,Q;)

n




Virial Expansion for Fermi Gas Based

on Two- and Three-Fermion Spectra

At unitarity (as—>oo) Liu, Hu and Drummond,
PRL 102, 160401 (2009)

0.3 . , : , uJE 0.00 ,
full > B Duke expr.
0.2 Abz \\a 9 :I-JII'O-OS ol
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/(N.
N=100: T/T =1 (K )

Experiment (Nascimbene et al.): Ab;(hom)=-0.35(2) [theory -0.355]
and Ab,(hom)=0.096(15) [no theoretical prediction].

Earlier theory work: Ho and Mueller, Rupak,...
Other experiments: Horikoshi et al., Zwierlein group,...



6Li-40K Mixture:

0.3 T | T [ ' | !

] Assumptions:
oak Abﬂj\\\\_ Infinite a,.
i "~~<_4 Zero-range interactions.
- 0.1F———< 4 Equal frequencies for Li and K
! < 1 (spherically symmetric trap).
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* This is the last week of “Fermions from Cold Atoms to
Neutron Stars: Benchmarking the Many-Body Problem”

program.

* One approach: Bottom-up...
= “Exact” results are obtainable for small N.
= Approximations/techniques can be validated.

* For example:

* Many of the Tan relations hold for trapped and
homogeneous, and small and large systems: Precision
benchmark through basis set expansion calculations
for equal-mass four-fermion system (Blume and Daily, PRA
80, 053626 (2009)).

= Equation of state for trapped two-component Fermi gas
as T=0...



FN-DMC and “Exact” Basis Set
calculati . g I | P r

Pair distribution function for up-down distance at unitarity:

Range
: N=3 r,=0.01a, .
asis set | 0_1- o

N { Very good
= agreement
— = between basis
— . . ' v set and fixed-
ay
<
-

node diffusion
Monte Carlo
(FN-DMC)
results.

O 2 2 2

0 1 2 3 4 5
von Stecher, Greene, Blume, o
PRA 77, 043619 (2008). ! / Uho



N.-N,=0,1: Energy of Trapped Two-

A  Fermi Gas at Unitari

Fixed-node diffusion Monte
Carlo (FN-DMC) energies:
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Even-odd oscillations.

Essentially no shell structure.

Blume, von Stecher, Greene,
PRL 99, 233201 (2007).

Local density
approximation (even N):

Egw(N) = EEN
Eti(N) = V& ENTETF

We find: £,=0.467.

For comparison:

E..=0.383(1)
(Forbes et al., arXiv:1011.2197)



Excitation Gap:
N odd, N=N,+N, and N,=N,+1
A(N) = E(N,,N,) - [E(N,-1,N,) + E(N,,N,+1)] / 2

T Excitation gap
FN-DMC (Blume et al.)] of order hv.

DFT (Bulgac Not sufficiently
PRA 76, 040502 (2007)) E{ - accurate to

,iiéi

distinguish
between N3
(LDA) and N1?

lattice MC (Nicholson (Son, arXiv:

et al., arXiv:1011.2804) 7| 0 7] :51)




Summary

* A first glance at selected few-body problems:

* Few-body states whose properties are determined by
just one or two parameters.

* High-T thermodynamics.

* Benchmark of different analytical and numerical
approaches and, in some cases, of the many-body
problem.

* Experimentally accessible.

* Future looks bright.



