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Outline of This Talk
• What is the state of the art of few-body calculations?
• Why do we care about the few-body problem?

• Stochastic variational approach:
 Basic idea and implementation.

• Examples:
 Weakly-interacting harmonically trapped few-boson systems.
 Few-fermion systems with equal masses.
 Strongly-interacting few-fermion systems with unequal

masses.

• Where are we headed?



Our Goal:
Characterize Few-Body Systems
• Motivation:
 Bottom-up approach: One step at a time…
 Often/sometimes: Few determine the properties of many.

• Experimental realization of few-body systems:
 Optical lattices (now “standard” in cold atom labs).
 Microtraps (beautiful work by Jochim’s group, 1101.2124).

• Success stories:
 Efimov effect (predicted in 1971, first solid evidence in 2006 by

Grimm’s group).
 Metal clusters: How many particles are needed for

superconductivity?
 Helium and para-hydrogen droplets: Microscopic superfluidity.



What is the Status of Few-Body
Calculations?

Trapped system Free-space (par-
tially confined)

difference in boundary condition
(but also: trap acts as “cutoff”)

What can be done depends on problem and accuracy wanted…

Scattering calculations are, in general, harder than bound state
calculations since scattering calculations require many
channels to be treated out to large R.

Scattering calculations: N=3 are standard, N=4 are becoming
available.



Techniques for Determining Quantum
Mechanics at Zero-Temperature
• Configuration interaction (CI)  with effective interactions.
• Effective field theory.
• Grid based techniques (real space and momentum

space).
• Various variants of Monte Carlo methods:
 VMC/DMC/FN-DMC.
 Lattice based.
• Basis set expansion approach with semi-analytical

integrals (stochastic variational approach).

• Parameters:
 Statistics, mass ratio, trapping geometry, interaction

strength, temperature (equivalent to “which part of
spectrum is probed”).



Contributions to Many-Body Problem:
Few-Body Physics…
• …tells us how many/which parameters are needed in many-body

problem: as, three-body parameter.

• …explains phenomena that occur in many-body environment: 3- and
4-body recombination.

• …provides input for thermodynamics: High-T virial expansion.

• …provides effective parameters for Bose-Hubbard Hamiltonian.

• …provides input for equation of state of two-component gas on BEC
side: atom-dimer and dimer-dimer sc. lengths.

• …provides benchmark results for methods that can treat small and
large particle samples: (FN-)DMC, lattice MC, DFT,…



Semi-Stochastic Variational Approach
Non-relativistic low-energy few-body Hamiltonian:

Idea:

Use basis set expansion approach that involves
Gaussian of different widths in interparticle distances.

Large number of non-linear parameters.
Non-orthogonal basis set.

H = Σi (Ti + Vtrap,i) + ΣI<j Vtwobody,ij ;    Vtwobody=V0exp[-(0.5r/r0)2]

Spherically 
symmetric.

Sum over unlike
spin pairs/all
particles.

Short-range and single chan-
nel (applicable to broad
resonance). ZR for r0→0.

rr0

aho

Method first introduced to cold atom community for bosons by Sorensen, Fedorov and
Jensen, AIP Conf. Proc. No. 777, p. 12 (2005). See also work on fermions by von Stecher
and Greene, PRL 99, 090402 (2007). For details see: Suzuki and Varga (Springer, 1998); von
Stecher, Greene, Blume, PRA 77, 043619 (2008).



Semi-Stochastic Variational Approach

 Symmetrized basis function with LΠ=0+ symmetry (Gaussian with
many non-linear parameters) ϕk =  ΣNp exp(-xTA(k)x/2)

 x collectively denotes N-1 Jacobi coordinates.
 A denotes (N-1)x(N-1) dimensional parameter matrix.

 Use physical insight to choose dij efficiently.
 For each basis function ϕk, we have N(N-1)/2 parameters.
 For N=4 and Nbasis=1000: 6000 variational, non-linear parameters.

Sum over interparticle
distances:
ΣI<j −(rij/dij)2 / 2

Total wave fct.:



Semi-Stochastic Variational Approach
Hamiltonian matrix can be evaluated semi-analytically.

Rigorous upper bound for energy (“controlled accuracy”).

Matrix elements for structural properties and momentum
distribution can be calculated analytically.

Computational effort increases with N:

 Evaluation of Hamiltonian matrix elements involves
diagonalizing  (N-1)x(N-1) matrix.

 More degrees of freedom require more basis functions.
 Number of permutations Np scale non-linearly (Np=2, 6, 24,

120,… for BB, BBB, BBBB, BBBBB,…).



Outline of Algorithm
• Pick basis function ϕ1 and calculate E1.

• Goal: Add ϕ2.
• Procedure:
 Pick ϕ2,1,…, ϕ2,n (n~1-10000).
 Calculate E2,1,…,E2,n  by solving determinantal equation.
 Determine ϕ2=ϕ2,j such that E2=E2,j≤E2,1,…,E2,n.
 Diagonalize Hamiltonian matrix: eigenvalues E2 and

eigenvectors C2.

• Goal: Add ϕ3.
• Procedure: As above.

• Once basis set is complete, calculate structural properties.



Five-Boson System:
Illustration of Convergence

Purely repulsive 2-body 
potential with r0 = 0.01aho
and as = 0.0096aho

Accuracy we
can obtain:
ΔE ~ 2x10-8hν.
(as/aho)4 ~ 10-8.



Trapped BBB System with Pairwise δ-
Function Interactions (x=as/aho)

E(3) =
ENI(3) + [3a1(2)x + [3a2(2)+a2(3)]x2 + …

√2/π

=-0.2697125…
[Johnson, Tiesinga, et al., NJP 11, 093022 (2009):
Effective field theory approach (regularization)]
a2(3) term is interpreted as leading order 
Effective *attractive* three-body interaction.

2[1-ln(2)]/π>0 -0.8557583…

Higher order terms should additionally depend on three-body
parameter.

Last summer, Eite Tiesinga asked if their analytical prediction can
be checked numerically…

See also
Jonsell et al.,
PRL (2002).



Analysis of BBB Energies for Finite-
Range Gaussian Interaction Potential

r0=0.01aho
r0=0.005aho

-0.269

“raw data”:
linear depen-
dence on as

Expectation:
Series expansion
works best for
small as, not 
large as.
But: We do have 
FR dependence...

Prediction:
E(3) =
ENI(3) + [2.394x - 0.269x2 +...]hν



BBB: Accounting for FR Effects
through Energy-Dep. Scattering Length

• E-dependence
leads to collapse
to single curve
(almost).

• Analytical
prediction
fulfilled:
Effectively
attractive three-
body interaction.

• Fit: |as|<0.01aho.

• Next steps:
 Include reff.
 Go to larger N.

Energy-dependent scattering length: Blume and Greene, PRA 65, 043613 (2002); 
Bolda et al., PRA 66, 013403 (2002).

-0.2697

Fit:

Quadratic: -0.2692/4

Cubic: 1.61/1.54

Quartic: -41/-26



Two-Component Fermi Gas under
Spherically Symmetric Confinement
• (1,1) system: “Gound state” (I.e., energetically lowest

lying low-energy state) has 0+ symmetry throughout
entire “crossover”/for all as.

• (2,1) system: Ground state has 1- symmetry for as=0- and
0+ symmetry for as=0+.

• (2,2) system: Ground state has 0+ symmetry for all as.

• (3,1) system: Ground state has 1+ symmetry for as=0-.

• (4,1) system: Ground state has 0- symmetry for as=0-.

Natural parity: Π=(-1)L. Unnatural parity: Π=(-1)L+1. 



Universal Relations for ZR Interactions
throughout Crossover due to Tan

Quantitative relation between distinctly different quantities such as
change of energy, trap energy, pair distribution function and
momentum distribution, inelastic two-body loss rate,...

“Integrated contact intensity” I(as) defined through momentum relation
[Tan, Annals of Physics (‘08)]: Ik(as) = limK→∞ π2 K Natom(k>K).

• It then follows:

 Adiabatic relation: ∂E(as,0)/∂as = h2/(16 π3mas
2) Iadia(as).

 Virial theorem: E(as,0) = 2 <Vtrap(as,0)> − h2/(32π3mas) Ivirial(as).

 Pair relation: Ipair(as) = lims→0 4π Npair(r<s) / s.

As a check, use all four relations to obtain I(as) and compare.



Integrated Contact for Energetically
Lowest Gas-Like State of (2,2) System

Iadia(as)
Ivirial(as)
Ipair(as)
Ik(as)

I(as) changes by about three
orders of magnitude throughout
crossover.
Very good agreement among the
four “different” I(as).

Blume and Daily, 
PRA 80, 053626 (2009).

Recent experiments:
Hu et al.,
arXiv:1001.3200.
Stewart et al., PRL 2010.
Earlier work:
Partridge et al., PRL 95,
020404 (2005). Re-
interpretation by Castin
and coworkers.



Pair Distribution Functions for N=4
(r0=0.005aho)

aho/as=-5

fit for r/aho∈
[0.015,0.1]

aho/as=-10

aho/as=0
aho/as=10



Momentum Distribution from One-Body
Density Matrix
• One-body density matrix:
ρ(r’,r) = ∫…∫Ψ*(r’,r2,…,rN)Ψ(r,r2,…,rN)dr2…drN

• Alternatively:
ρ(r’,r) = <ψ+(r’)ψ(r)>, where ψ+(r’) and ψ(r) are field
operators that create and destroy a particle at
position r and r’.

• It follows: n(k) = (2π)-3 ∫∫ exp[ik⋅(r-r’)]ρ(r’,r) drdr’.

• Partial wave decomposition:
n(k) = Σlm nl(k) Ylm(θk,ϕk).

• Then: ∫n(k)dΩk = (4π)1/2  n0(k)
Shown on next 
slide for N=4



Lowest Partial Wave Projection of
Momentum Distribution: (2,2) System

1/as=0

aho/as=-10

aho/as
=10

aho/as=-5

aho/as=0

Ik,↑(as) =
lim1/k→0 4π5/2n00,↑(k)k4



Condensate Fraction on BEC Side
• Number of pairs: <Ψ+(r1’)Ψ+(r2’)Ψ(r1)Ψ(r2)>

• Pair density matrix:
ρ(R’,R) =  ∫…∫Ψ*(R’,r12,…,rN)Ψ(R,r12,…,rN)dr12d3…drN

Pair remains “in tact”: 
“good CM vector”.

Pair “destroyed”:
“bad CM vector”. 

Astrakharchik et al.,
PRL 230405 (2005).

CM of up-
down pair

up-down position vectors



Molecular Condensate Fraction and
Momentum Distribution: (2,2) System

Blume and Daily, C. R. Physique 12, 86 (2011).

Momentum K associated with CM of pair

aho/as=2.5

aho/as=10

Condensation of 
pairs!

Color: numerics; thin black line: analytical.



Convergence for Different Mass Ratios:
FFX System with 1- Symmetry (1/as=0)

κ=1

κ=6

κ=12

range r0~0.01aho
Typically between 120
and 650 basis
functions.
Each basis function
selected from about
1000.

κ=1
κ=6

κ=12

Angular
momentum
distributed 
among all
Jacobi vectors.



Finite Range Effects: Trapped FFX
System  with LΠ=1- at Unitarity

κ=10
12

κ=12.3

12.4
12.5

Symbols: Stochastic
variational energies.
Red lines: Four to
five parameter fits.

Bound states!
Diverge as r0

-2
.

Large FR 
effects for κ=12;
but small FR 
effects for 
κ=12.313!

12.3131

Calculations employ a purely attractive Gaussian potential between FX
pairs with range r0. See Blume and Daily, PRL 105, 170403; PRA 82, 063612.



Energies for Trapped FFX System with
LΠ=1- at Unitarity

Black symbols:
Stochastic variational
energies for finite-
range Gaussian extra-
polated to r0=0.

Away from κ≈12.313
(or s≈1/2), extra-
polated FR energies
agree well with Ef.

Ef: energy within
universal theory.

Ef=(s+1)hν

κ=8.619 κ=13.606
We interpret the dropping of the 3-body energies around κ≈12.313 as a “3-body 
(atom+atom+atom) resonance”! 

Ef=(s+3)hν



Hyperradial Solution for “Generic”
Effective 1/R2 Potential

Radial SE [s=l+1/2: s2-1/4=l(l+1)]:

Write E=(2q+sν+1)hν.
Two linearly indep. solutions (sν>0):
f(R)→Rs+1/2 as R→0.
g(R)→R-s+1/2 as R→0.

For sν>1, g not normalizable. Eliminate.

κ1 8.62 13.61

Fully 
universal
(a0 only)

Efimov
physics

Efimov, Yad. Fiz. 12, 1080 (1970); Nucl. Phys.
A 210, 157 (1973). D’Incao and Esry, PRA 73,
030702 (2006) and follow-up work. Petrov,
PRA 67, 010703(R) (2003). Nishida, Tan, Son,
PRL 100, 090405 (2008). Werner and Castin,
PRA 74, 053604 (2006). Kartavtsev and
Malykh, JPB 40, 1429 (2007).

1-

?
s=1 s=0



Hyperradial Potentials for FFX System
with Infinitely Large Scattering Length

1/2

1/4
1/10

s=2

s+
1

V(R) = h2(s2-1/4)/(2µR2)+
            µω2R2/2

s0 obtained using 
formalism developed 
in Ph.D. thesis of Seth 
Rittenhouse, CU Boulder.
See PRA 82, 022706.

LΠ=1-

LΠ=3-
LΠ=0+

Effective three-body 
interaction:
F(R)~
f(R)−tan[δ3b(k)]g(R).
3-body resonance=
phase shift of π/2.



What about FFFX System at Unitarity?

LΠ=1+ symmetry

LΠ=1+ symmetry

No good angular momen-
tum or parity.



Range-Dependence:
FFFX System

κ=0.1

κ=0.8

κ=1

κ=10.5

κ=9

κ=10.6

LΠ=1+ symmetry.

Calculations are performed for 2-
body Gaussian potential.

Work by Gandolfi and Carlson 
(arXiv:1006.5186): 3-, 4-, 5-body 
resonance but no (N>5)-
resonance.



FFFX: Hyperradial
Densities

κ=1κ=8
4

κ=10
r0=0.054aho

0.027

κ=10.4

κ=10.6
κ=10.5

Solid lines obtained
by assuming universal
state and fitting density
to expected density
(treating s as fitting
parameter)

Densities are obtained
through Metropolis
sampling of wave function
obtained by stochastic
variational approach
(VMC method).

        



Next Steps
• Extend the calculations to fixed-R:
 Gives hyperangular eigenvalue directly.
 Allows for scattering calculations.

• For LΠ=0+ symmetry: See von Stecher and Greene, PRA 80,
022504 (2010).
 Application to four-boson system (Greene group).
 Application to (2,2) fermion system (Greene group).

• For LΠ=1-:
 We have worked out and tested integrals for N=3 and 4.

• For LΠ=1+:
 We have worked out and tested integrals for N=3.



Summary

• Motivated the importance of few-body studies,
also in view of benchmarking the many-body
problem.

• Introduced stochastic variational approach and its
application to small Bose and Fermi systems:
 Bose gas.
 Equal-mass fermions.
 Unequal-mass fermions.


