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Dynamic Mean Field Approximation
the full story in few lines

At the limit of large dimensionality d −→∞ the self-energy becomes localized.

One can write self-consistency relations for the self energy −→ DMFT.

Equivalent to a 1D QFT problem.

At finite d DMFT becomes an approximation T −→ A.

DMFA is a mean field approach, approximating local self-energy.

Σ̂(k, iωn) −→ Σ̂(iωn)

The DMFA approximation reduces the d-dimensions Hubbard model into a
self-consist temporal problem.

Valid for finite lattice filling (the extrapolation to the continuum is tricky).

The outcome of this approach is G(k, iωn).
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The BCS-BEC crossover
N. Barnea, Phys. Rev. A 78, 053629 (2008).
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PRL 91, 050401 (2003).
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Results
The energy per particle and the gap
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The continuum limit 〈n〉 −→ 0 for the T = 0 energy per particle E/N and ∆0.
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The pseudo-gap - Magiersky et al. Arxiv: 0801.150

Graph taken form the first version of the
manuscript (Arxiv: 0801.1504). Note that the
raising part of ∆qp disappeared in the final version.
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Energy spectrum
Extracting the physics from the simulation

For numerical calculations, analytic continuation to the real axis is a painful
procedure.

To overcome this hardship consider a BCS quasi-particle Green’s function

Gqp(k, iωn) = − −iωn + µ− εk − Σ

(iωn + Ek)(iωn − Ek)

This Green’s function contains 3 unknowns µ,Σ, Ek

and can be used to calculate any physical quantity.

In particular we can evaluate the susceptibility,

χ(k) = −
∫ β

0

dτG(k, τ) = − 2

β

∑ 1

iωn
G(k, iωn) .

The occupation probability

f(k) = G(k, 0+) =
1

β

∑
eiωn0+G(k, iωn)

and

ζ(k) =
dG(k, τ)

dτ

∣∣∣∣
τ=0+

=
1

β

∑
eiωn0+ iωnG(k, iωn)
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Excitation spectrum

Manipulating these quantities, we get

Ek =

√
− 1

χ(k)

[
2ζ(k) +

2f(k)− 1

χ(k)

]

few comments

We use this formula as a definition of Ek.

Making it a legitimate physical quantity.

Interpretation?

In the DMFA χ(k), f(k), ζ(k) can be
calculated directly.

Ek fits very well to the quasi-particle
spectrum

Ek =
√

(αqpεk + Σqp − µ)2 + ∆2
qp

where αqp,Σqp,∆qp are free parameters.

The quasi-particle spectrum at
T = 0.38TF ≥ 2TC
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Energy, µ, gaps ...
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The quasi particle gap
The superfluid vs the normal gap
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Frustrating the superfluid
solution it can be seen that
the phase transition happens
just as the ”insulator gap”
and the superfluid gap cross.
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Conclusions

1 The DMFA reproduce a smooth BCS-BEC transition.

2 The extrapolated continuum values of the energy per particle and the gap
function agree very well with QMC results.

3 The pairing phase transition is reproduced. Leading to Tc with overall
agreement with the QMC.

4 Pseudo Gap found at T > Tc is associated with the imaginary part of the
self-energy.

5 The superfluid solution breaks down when the ”insulator” gap becomes as large
as the superfluid gap.
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