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Dynamic Mean Field Approximation

the full story in few lines

o At the limit of large dimensionality d — oo the self-energy becomes localized.
@ One can write self-consistency relations for the self energy — DMEFT.
Equivalent to a 1D QFT problem.

o At finite d DMFT becomes an approximation T — A.

o DMFA is a mean field approach, approximating local self-energy.

S(k, iwn) — B(iwn)

The DMFA approximation reduces the d-dimensions Hubbard model into a
self-consist temporal problem.

e Valid for finite lattice filling (the extrapolation to the continuum is tricky).

@ The outcome of this approach is G(k,iws).
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The BCS-BEC crossover

N. Barnea, Phys. Rev. A 78, 053629 (2008).
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Results

The energy per particle and the gap
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The pseudo-gap - Magiersky et al. A
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Graph taken form the first version of the
manuscript (Arxiv: 0801.1504). Note that the
raising part of Ay, disappeared in the final version.
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Energy spectrum

Extracting the physics from the simulation

o For numerical calculations, analytic continuation to the real axis is a painful
procedure.
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Energy spectrum

Extracting the physics from the simulation

o For numerical calculations, analytic continuation to the real axis is a painful
procedure.
e To overcome this hardship consider a BCS quasi-particle Green’s function
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Gllp(kv iwn) = -

o This Green’s function contains 3 unknowns pu, 3, Fg
and can be used to calculate any physical quantity.
o In particular we can evaluate the susceptibility,

X(k):f/o drG(k,T) Z—szwn).

@ The occupation probability

f(k) = G(k,07) = % 3 e Gk, wn)
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procedure.
e To overcome this hardship consider a BCS quasi-particle Green’s function
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Excitation spectrum

Manipulating these quantities, we get
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Excitation spectrum

Manipulating these quantities, we get

1
e = \/_x(k) <00+ 205

few comments

We use this formula as a definition of Fy.
Making it a legitimate physical quantity.
Interpretation?

In the DMFA x(k), f(k),((k) can be
calculated directly.

E fits very well to the quasi-particle
spectrum

Er = \/(aqpek + Bgp — )2 + AZ,

where agp, Xgp, Ayp are free parameters.
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The quasi particle gap, Agp, goes a sharp, 2nd order, transition at T,
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The quasi particle gap

The superfluid vs the normal gap
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The Gap evolution

Frustrating the superfluid
solution it can be seen that
the phase transition happens
just as the ”insulator gap”
and the superfluid gap cross.
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Conclusions

@ The DMFA reproduce a smooth BCS-BEC transition.

@ The extrapolated continuum values of the energy per particle and the gap
function agree very well with QMC results.

@ The pairing phase transition is reproduced. Leading to T, with overall
agreement with the QMC.

@ Pseudo Gap found at T' > T is associated with the imaginary part of the
self-energy.

@ The superfluid solution breaks down when the ”insulator” gap becomes as large
as the superfluid gap.
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