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2-body scattering state:

fk =
k→0
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a + ik − 1

2k2re + . . .

A. FERMIONS Spin 1/2 N↑ + N↓ = N
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Zero-Range Model:
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Exact relations [Tan 2008]:    for any eigenstate:
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∫ ( ∏
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) ∫
ddRij(A

(1)
ij A(2)

ij )(Rij , (rk)k !=i,j)
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Lemma:

ψ1 : a1, A(1)
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(
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− 1
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)
(A(1), A(2))

[⇐ Ostrogradsky′s Thm.]



2 C ≡ lim
k→∞

k4 nσ(k) = (4π)2 (A, A)
∫

d3k

(2π)3
nσ(k) = Nσ.

Derivation à la Olshanii-Dunjko [2003, in 1D]:
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3
∫

d3R g(2)
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(A, A)
r2

g(2)
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4πma
+
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σ

∫
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〈
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U(ri)

〉

Numerical verification of exact relations 
for 4 fermions [Daily&Blume 2009]
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n(k) [Stewart et al.]
#closed-channel molecules
[Partridge et al. + Werner et al.]

Contact measurements
for balanced Fermi gas at low T in a trap



Theo:
[Punk&Zwerger 2007]
[Baym, Pethick, Yu&Zwierlein 2007]
[Pieri, Perali&Strinati 2009]
[Schneider, Shenoy&Randeria 2009]
[Haussmann, Punk&Zwerger 2009]
[Braaten, Kang&Platter 2010]
[Schneider&Randeria 2010]

Exp:  [Stewart, Gaebler, Drake & Jin 2010]

C also appears in radiofrequency spectra



Some new relations

1

2

1
2

d2En

d(−1/a)2
=

(
4π!2

m

)2 ∑

n′,En′ !=En

|(A(n′), A(n))|2

En − En′

⇓

∂C

∂(1/a)
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generalises [Efimov 1993]
[⇐ Ostrogradsky′s Thm. + effective range model]



generalisations to 2D
and to finite-range interactions:
see arXiv



B.  BOSONS Spinless Efimov effect

additional boundary condition in Zero-Range Model:

ψ(r1, . . . , rN ) ∼
R→0

1
R2

sin
[
|s0| ln R

Rt

]
Φ(Ω) B(C, r4, . . . , rN )

−s cos
(
s
π

2

)
+

8√
3
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(
s
π

6

)
= 0

s0 = i · 1.00624 . . . is imaginary solution of

       3-body parameter
(directly related to binding energy of Efimov trimers
Rt =

Φ(Ω) =       hyperangular part of
wavefunction of Efimov trimer

R ≡
√(

r 2
12 + r 2

23 + r 2
13

)
/3
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32
|s0|2N(N − 1)(N − 2)

·
∫

dC
∫

dr4 . . . drN |B(C, r4, . . . , rN )|2

[⇐ Ostrogradsky′s Thm.]
4 Virial Thm. [Werner 2008]:
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For Efimov trimer:

n(k) =
k→∞

C

k4
+

D

k5
cos

[
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√
3/κ0) + ϕ

]
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⇒
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[
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]
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 3 particles      a =∞

In isotropic harmonic trap: wavefunctions known
[Jonsell, Heiselberg&Pethick 2002; Tan 2004; Werner&Castin 2005]

(
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Agreement with numerical results of: Braaten & Hammer; von 
Stecher, Greene & Blume; Werner & Castin

Efimov trimers: wavefunction known [Efimov 1970]
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V. APPLICATIONS

In this Section, we apply some of the above relations, first to the three-body problem and then to the many-body
problem. We consider the unitary limit a = ∞ in three dimensions.

A. Three-body problem: corrections to exactly solvable cases and comparison with numerics

Here we use the known analytical expressions for the three-body wavefunctions to compute the corrections to the
spectrum to first order in the inverse scattering length 1/a and in the effective range re.

1. Universal eigenstates in a trap

The problem of three identical spinless bosons [108, 109] or two-component fermions (say N↑ = 2 and N↓ =
1) [108, 110] is exactly solvable in the unitary limit in an isotropic harmonic trap U(r) = 1/2mω2r2. Here we restrict
to zero total angular momentum, with a center of mass in its ground state, so that the normalization constants of the
wavefunctions are also known analytically [75]. Moreover we restrict to universal eigenstates [149]. The spectrum is
then given by

E = Ecm + (s+ 1 + 2q)!ω (191)

where Ecm is the energy of the center of mass motion, s belongs to the infinite set of real positive solutions of

− s cos
(

s
π

2

)

+ η
4√
3
sin

(

s
π

6

)

= 0 (192)

with η = +2 for bosons and −1 for fermions, and q is a non-negative integer quantum number describing the degree
of excitation of an exactly decoupled bosonic breathing mode [86, 111]. We restrict for simplicity to states with q = 0.
a. Derivative of the energy with respect to 1/a. Injecting the expression of the regular part A of the normalized

wavefunction [75] into the relation (24) or its bosonic version (Table V, line 1) we obtain
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∣

∣

∣
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=
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(
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]
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!3ω

m
. (193)

For the lowest fermionic state, this gives (∂E/∂(1/a))a=∞ $ −1.1980
√

!3ω/m, in agreement with the value −1.19(2)
which we extracted from the numerical solution of a finite-range model presented in Fig. 4a of [81], where the error
bar comes from our simple way of extracting the derivative from the numerical data of [81].
b. Derivative of the energy with respect to the effective range. Using relation (136), which holds not only for

fermions but also for bosonic universal states, we obtain
(

∂E

∂re

)

a

=
Γ(s− 1/2)s(s2 − 1/2) sin(sπ/2)

Γ(s+ 1)2
√
2
[

− cos(sπ/2) + sπ/2 · sin(sπ/2) + η 2π/(3
√
3) · cos(sπ/6)

]

√
!mω3. (194)

For bosons, this result was derived previously using the method of [87] and found to agree with the numerical solution
of a finite-range separable potential model for the lowest state [75]. For fermions, (194) agrees with the numerical
data from Fig. 3 of [81] to ∼ 0.3% for the two lowest states and 5% for the third lowest state [150]; (194) also agrees
to 3% with the numerical data from p. 21 of [75] for the lowest state of a finite-range separable potential model. All
these deviations are compatible with the estimated numerical accuracy.

2. Derivative of the energy of an Efimov trimer with respect to 1/a.

The same relation (Table V, line 1) can be applied to Efimov trimers in free space. Using the expression of the
normalized three-body wavefunction (see App. D) we get
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=
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where η = 2 for bosons, −1 for fermions

⇒

⇒

(universal states; l = 0; q = 0)
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all the data lie on the same straight line for low enough kF |re|, which is indeed essentially the case (considering the
size of the error bars). We then conclude that the shift of Tc due to the interaction range is of order

δTc

TF
! 0.12kF re, (216)

at low re and in a model independent way. This results in a relative shift at the percent level for typical experiments on
lithium, where kF re ≈ 0.02 if one takes the effective range value re = 4.7 nm calculated in [117] and the experimental
value 1/kF ! 250 nm of [32].
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FIG. 5: Critical temperature Tc of the unitary Fermi gas as a function of the effective range re of the interaction potential, as
given by the Quantum Monte Carlo results of [41] for the Hubbard model (symbols with re < 0) and of [44] for a continuous
space model (symbols with re > 0). The dashed line corresponds to a linear fit of the data over the interval kF re ∈ [−0.8, 0.45].
Here kBTF = !

2k2
F /(2m) is the Fermi energy of the ideal gas with the same density as the unitary gas.

VI. CONCLUSION

We derived relations between various observables for N particles of arbitrary masses and statistics in an external
potential with zero-range or short-range interactions, in continuous space or on a lattice, in two or three dimensions.

Some of our results generalize the ones of [55, 61, 62, 65, 68]: The large-momentum behavior of the momentum
distribution, the short-distance behavior of the pair correlation function and of the one-body density matrix, the
derivative of the energy with respect to the scattering length or to time, the norm of the regular part of the wavefunction
(defined through the behavior of the wavefunction when two particles approach each other), and, in the case of finite-
range interactions, the interaction energy, are all related to the same quantity C; and the difference between the total
energy and the trapping potential energy is related to C and to a functional of the momentum distribution (which
is also equal to the second order term in the short-distance expansion of the one-body density matrix). For Efimov
states with zero-range interactions, we found that this last relation breaks down, because the large-momentum tail of
the momentum distribution contains a subleading oscillatory term.

We also obtained entirely new relations: The second order derivative of the energy with respect to the inverse
scattering length (or to the logarithm of the scattering length in two dimensions) is related to the regular part of

Critical Temperature of Unitary Gas

Tc

TF
! 0.15 + 0.12 kF re

[Burovski et al.,
2006]

Hubbard
model

Continuous
space
model

∼ 2% for 6Li
∼ 6% for 40K (TBC)


