INT Workshop on Weakly Bound Systems

THE NO CORE SHELL MODEL APPROACH

- \div **Introduction to the method**
- Applications to light nuclei selected results
- Applications to trapped systems 2- and 3-body systems

Ionel Stetcu, Department of Physics, UW

Description of the method

The nuclear many-body problem

$$
H_{int} = \frac{1}{A} \sum_{i > j = 1}^{A} \frac{(\vec{p_i} - \vec{p_j})^2}{2m} + \sum_{i > j = 1}^{A} V_{ij} + \sum_{i > j > k = 1}^{A} V_{ijk} + ...
$$

 (local and non-local) "high precision'' NN interactions \odot three-body forces

$$
H = H_{int} + \frac{\vec{P}_{CM}^2}{2mA} + \frac{1}{2}mA\omega^2 \vec{R}_{CM}^2
$$
 Lipkin 1957

$$
= \sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2 \right) + \sum_{i < j = 1}^{A} \left(V_{ij} - \frac{m\omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 \right) + \sum_{i < j < k = 1}^{A} V_{ijk} + \dots
$$

- used to derive the effective interaction
- mean-field like contribution

NCSM

- \triangleright direct diagonalization method
- \triangleright basis states constructed from HO wave functions
- \triangleright all particles are allowed to interact
- $\mathcal{H} = U H U^{\dagger}$ \triangleright effective interaction constructed via a unitary transformation
- \triangleright "cluster approximation"
- \triangleright short-range effects accounted by the effective interaction
- \triangleright long-range and many-body effects accounted by increasing the model space
- *quite successful in describing low-energy properties of light nuclei*

$$
(P+Q)\mathcal{H}(P+Q)|\Psi\rangle = E_{\Psi}|\Psi\rangle
$$
\n
$$
P\mathcal{H}_{eff}P = P\mathcal{H}P + E_{\Psi}Q\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}.
$$
\n
$$
P\mathcal{O}_{eff}P = POP + E_{\Psi}Q\frac{1}{E_{\Phi} - Q\mathcal{H}Q}QOP + POQ\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}.
$$
\n
$$
P\mathcal{H}Q = Q\mathcal{H}P = 0 \qquad \qquad + E_{\Psi}Q\frac{1}{E_{\Phi} - Q\mathcal{H}Q}QOQ\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}.
$$

 $n = 12$

 $n = 8$

 $n = 4$

 $n = 0$

Q

P

Basis states in NCSM

"Cluster" approximation

 \Box decoupling condition ($P{\cal H}Q=Q{\cal H}P=0$) for *a*-body ($a \le A$) – no expansion \square effective interaction used in solving the A -body problem

Standard approach

 \triangle all results can depend on the size of the model space "bare" operators for other observables are usually employed

Applications to light nuclei

Energy spectrum

FIG. 3: $^{11}{\rm B}$ excitation spectra as function of the basis space size N_{max} at $\hbar\Omega = 15$ MeV and comparison with experiment. The isospin of the states depicted is $T=1/2$.

More examples

FIG. 4: States dominated by p-shell configurations for ^{10}B , ¹¹B, ¹²C, and ¹³C calculated at $N_{\text{max}} = 6$ using $\hbar\Omega = 15$ MeV (14 MeV for ¹⁰B). Most of the eigenstates are isospin $T=0$ or $1/2$, the isospin label is explicitly shown only for states with $T=1$ or 3/2. The excitation energy scales are in MeV.

Navratil et. al., 2008

Resonating-group method

$$
\mathbf{W}^{(A)} = \sum_{\mathbf{v}} \hat{\mathcal{A}} \left[\psi_{1\mathbf{v}}^{(A-a)} \psi_{2\mathbf{v}}^{(a)} \varphi_{\mathbf{v}}(\vec{r}_{A-a,a}) \right] = \sum_{\mathbf{v}} \int d\vec{r} \varphi(\vec{r}) \hat{\mathcal{A}} \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)}
$$
\n
$$
\vec{r}_{A-a,a} \quad (a)
$$
\n
$$
\Phi_{\mathbf{v}\vec{r}}^{(A-a,a)} = \psi_{1\mathbf{v}}^{(A-a)} \psi_{2\mathbf{v}}^{(a)} \delta(\vec{r} - \vec{r}_{A-a,a})
$$
\n
$$
(A-a)
$$

 \Box The many-body Schrodinger equation is mapped onto:

$$
H\Psi^{(A)} = E\Psi^{(A)} \longrightarrow \sum_{\mathbf{v}} \int d\vec{r} \left[\mathcal{H}_{\mu\mathbf{v}}^{(A-a,a)}(\vec{r}',\vec{r}) - E \mathcal{K}_{\mu\mathbf{v}}^{(A-a,a)}(\vec{r}',\vec{r}) \right] \varphi_{\mathbf{v}}(\vec{r}) = 0
$$

\nHamiltonian
\nkernel
\n
$$
\frac{\langle \Phi_{\mu\vec{r}'}^{(A-a,a)} | \hat{\mathcal{A}} H \hat{\mathcal{A}} | \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)} \rangle}{\langle \Phi_{\mu\vec{r}'}^{(A-a,a)} | \hat{\mathcal{A}}^2 | \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)} \rangle}
$$

 \Box Input: $\mathbf{W}_{1\gamma}^{(A-a)}\mathbf{\Psi}_{2\gamma}^{(a)}$ \blacktriangleleft eigenstates of $H_{(A-a)^r}H_{(a)}$ in the NCSM basis

 \Box Output (e.g., *R*-matrix method on Lagrange mesh): $\varphi_v(\vec{r})$, scattering matrix

NCSM/RGM: NCSM microscopic wave functions for the clusters involved, and realistic (bare or derived NCSM effective) interactions among nucleons. The $A=4$ system as a test ground for the NCSM/RGM approach within the single-nucleon-projectile basis Courtesy S. Quaglioni

- \Box NCSM/RGM calculation with $n + {}^{3}H(g.s.)$ and $p + {}^{3}He(g.s.)$, respectively
- \Box χEFT N³LO NN potential: convergence with 2-body effective interaction
- Benchmark: AGS results (**+**), Deltuva & Fonseca, PRC**75**, 014005 (2007)

The omission of A = 3 partial waves with $1/2 <$ J \leq 5/2 leads to effects of comparable magnitude on the AGS results. Need to include target excited (here breakup) states!

NCSM/RGM *ab initio* calculation of *d*-4He scattering **4He** *d* Courtesy S. Quaglioni

 $N_{\text{max}} = 8 \text{ NCSM} / \text{RGM}$ calculation with *d*(g.s.) + ⁴He(g.s.)

- \Box SRG-N³LO potential with $\Lambda = 2.02$ fm⁻¹ $200₁$ 6Li $3^{\dagger}0$ $d(g.s.) + \alpha(g.s.)$ $2^{\dagger}0$ 150 $N_{\text{max}} = 8$ 1^+ 0 N_{max} $= 6$ $\frac{1}{6}$ 100 4.31 3.563 0^*1 2.186 50 $3^{+}0$ $SRG-N³LO$.07 preliminary 1.4743 루. 4 He+d $0\frac{L}{0}$ $\overline{2}$ $\overline{\mathbf{3}}$ $\overline{5}$ 6 E_{kin} [MeV] 1^{\ast} :0
- Calculated two resonances: 2**⁺**0, 3**⁺**0

Courtesy S. Quaglioni

Courtesy S. Quaglioni

The 1⁺0 g.s. is still unbound: convergence moves towards bound state

NCSM application relevant to physics beyond standard model

One-body contribution:

$$
D^{(1)} = \langle 0| \sum_{i=1}^{A} \frac{1}{2} \left[\left(d_p + d_n \right) + \left(d_p - d_n \right) \tau_z(i) \right] \sigma_z(i) |0 \rangle \\[10pt] \quad d_p \approx \mp \frac{e}{4 \, \pi^2 \, m_N} \, (\bar{G}_\pi^0 - \bar{G}_\pi^2) \, \ln \left(\frac{m_N}{m_\pi} \right)
$$

Two-body contributions:

$$
D^{(2)} = \langle 0 | \hat{D}_z | \tilde{0} \rangle + \text{c.c.} \qquad \hat{D}_z = \frac{e}{2} \sum_{i=1}^A (1 + \tau_i^z) z_i
$$

$$
\tilde{0} \rangle = \sum_{n \neq 0} \frac{1}{E_0 - E_n} |n\rangle \langle n| H_{\not{P}T} |0\rangle = G(E_0) H_{\not{P}T} |0\rangle
$$

$$
\frac{\bar{G}_{\pi}^0}{\text{neutron}} \frac{\bar{G}_{\pi}^1}{0.010} \frac{\bar{G}_{\pi}^1}{0.000} - \frac{\bar{G}_{\pi}^2}{0.000}
$$

$$
\text{deuteron} \quad 0.000 \quad 0.015 \quad 0.000 \quad \text{Stetcu et. al., 2008} \frac{\partial H}{\partial H^*} \quad -0.024 \quad 0.023 \quad -0.027
$$

Stetcu et. al, 2005, 2006

Applications to trapped systems

Many-body problem in a trap

$$
H_A = \sum_{i=1}^A \left(\frac{p_i^2}{2m} + \frac{1}{2} m \omega^2 r_i^2 \right) + C_0 \sum_{i < j = 1}^A \delta^{(3)}(\vec{r_i} - \vec{r}_j)
$$

$$
\begin{aligned} H &= H_{int} + \frac{\vec{P}_{CM}^2}{2mA} + \frac{1}{2}mA\omega^2 \vec{R}_{CM}^2 \\ &= \sum_{i=1}^A \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2 \right) + \sum_{i < j = 1}^A \left(V_{ij} - \frac{m\omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 \right) + \sum_{i < j < k = 1}^A V_{ijk} + ... \end{aligned}
$$

The two many-body systems formally similar

Two particles in a trap

$$
h_2 = \frac{p^2}{2\mu} + \frac{1}{2}\mu\omega^2 r^2 + V_2(r)
$$

T. Stöferle et. al., Phys. Rev. Le4. **96** (2006) 030401

 $3.0\,$

 -1.5

 $\Gamma(3/4 - \epsilon/2)/\Gamma(1/4 - \epsilon/2)$ 0.0

EFT for two particles in a trap

Assumption: observables given by

$$
\frac{\Gamma(3/4-\varepsilon/2)}{\Gamma(1/4-\varepsilon/2)}=-\frac{b}{2}\left(-\frac{1}{a_2}+\frac{r_0}{b^2}\varepsilon+...
$$

In finite model spaces:

$$
\begin{array}{l} V_{LO}({\vec p},{\vec p}^{\prime})=C_0 \\ \noalign{\vskip 2mm} V_{NLO}({\vec p},{\vec p}^{\prime})=C_2(p^2+p^{\prime 2}) \\ \noalign{\vskip 2mm} V_{N^2LO}({\vec p},{\vec p}^{\prime})=C_4(p^2+p^{\prime 2})^2 \end{array}
$$

 C_0 C_2 C_4 …

Constants to be determined in each model space so that select observables are preserved

Running of the two-body spectra (finite range)

Three-body problem up to N^2LO (b/ $a_2=0$)

Away from unitarity (LO only)

Stetcu et. al., 2007

Three-body at unitarity w/ physical

range

Summary

NCSM:

 flexible approach to solving few- and many-body systems Jacobi / Slater determinant basis equivalent (energy truncation) ◆ local / non-local interactions extension to accommodate clustering effects excellent framework for testing new approaches to describing trapped systems

Future:

- lots of exciting developments (core SM, RGM extension, WS, etc.)
- **EFT/NCSM application to few-body problems**