INT Workshop on Weakly Bound Systems

THE NO CORE SHELL MODEL APPROACH

- Introduction to the method
- Applications to light nuclei selected results
- ☆ Applications to trapped systems 2- and 3-body systems

Ionel Stetcu, Department of Physics, UW

Description of the method

The nuclear many-body problem

$$H_{int} = \frac{1}{A} \sum_{i>j=1}^{A} \frac{(\vec{p_i} - \vec{p_j})^2}{2m} + \sum_{i>j=1}^{A} V_{ij} + \sum_{i>j>k=1}^{A} V_{ijk} + \dots$$

(local and non-local) "high precision" NN interactions
three-body forces

$$\begin{split} H &= H_{int} + \frac{\vec{P}_{CM}^2}{2mA} + \frac{1}{2}mA\omega^2 \vec{R}_{CM}^2 & \text{Lipkin 1957} \\ &= \sum_{i=1}^A \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2 \right) + \sum_{i< j=1}^A \left(V_{ij} - \frac{m\omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 \right) + \sum_{i< j< k=1}^A V_{ijk} + \dots \end{split}$$

• used to derive the effective interaction

• mean-field like contribution

NCSM

- direct diagonalization method
- basis states constructed from HO wave functions
- all particles are allowed to interact
- "cluster approximation"
- > short-range effects accounted by the effective interaction
- Iong-range and many-body effects accounted by increasing the model space
- > quite successful in describing low-energy properties of light nuclei

$$(P+Q)\mathcal{H}(P+Q)|\Psi
angle = E_{\Psi}|\Psi
angle$$
 $P\mathcal{H}_{eff}P = P\mathcal{H}P + P\mathcal{Q}\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}$
 $P\mathcal{O}_{eff}P = P\mathcal{O}P + P\mathcal{Q}\frac{1}{E_{\Phi} - Q\mathcal{H}Q}Q\mathcal{O}P + \mathcal{P}\mathcal{O}Q\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}$
 $P\mathcal{H}Q = Q\mathcal{H}P = 0$
 $+P\mathcal{Q}\mathcal{Q}\mathcal{O}Q\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}\mathcal{O}Q\frac{1}{E_{\Psi} - Q\mathcal{H}Q}\mathcal{Q}\mathcal{O}Q$

n = 12

n = 8

n = 4

n = 0

Q

Ρ

Basis states in NCSM

"Cluster" approximation

□ decoupling condition (PHQ = QHP = 0) for *a*-body ($a \le A$) – no expansion □ effective interaction used in solving the *A*-body problem

Standard approach

all results can depend on the size of the model space
"bare" operators for other observables are usually employed

Applications to light nuclei

Energy spectrum

Navratil et. al., 2008

FIG. 3: ¹¹B excitation spectra as function of the basis space size $N_{\rm max}$ at $\hbar\Omega = 15$ MeV and comparison with experiment. The isospin of the states depicted is T=1/2.

More examples

FIG. 4: States dominated by *p*-shell configurations for ¹⁰B, ¹¹B, ¹²C, and ¹³C calculated at $N_{\text{max}} = 6$ using $\hbar\Omega = 15$ MeV (14 MeV for ¹⁰B). Most of the eigenstates are isospin T=0 or 1/2, the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation energy scales are in MeV.

Navratil et. al., 2008

Resonating-group method

The many-body Schrodinger equation is mapped onto:

$$H\Psi^{(A)} = E\Psi^{(A)} \longrightarrow \sum_{v} \int d\vec{r} \left[\mathcal{H}^{(A-a,a)}_{\mu\nu}(\vec{r}',\vec{r}) - E\mathcal{N}^{(A-a,a)}_{\mu\nu}(\vec{r}',\vec{r}) \right] \phi_{v}(\vec{r}) = 0$$

Hamiltonian
kernel $\langle \Phi^{(A-a,a)}_{\mu\vec{r}'} | \hat{\mathcal{A}}H\hat{\mathcal{A}} | \Phi^{(A-a,a)}_{\nu\vec{r}} \rangle = \langle \Phi^{(A-a,a)}_{\mu\vec{r}'} | \hat{\mathcal{A}}^{2} | \Phi^{(A-a,a)}_{\nu\vec{r}} \rangle$ Norm

□ Input: $\psi_{1\nu}^{(A-a)}\psi_{2\nu}^{(a)}$ ← eigenstates of $H_{(A-a)}$, $H_{(a)}$ in the NCSM basis

Output (e.g., *R*-matrix method on Lagrange mesh): $\phi_v(\vec{r})$, scattering matrix

NCSM/RGM: NCSM microscopic wave functions for the clusters involved, and realistic (bare or derived NCSM effective) interactions among nucleons.

Courtesy S. Quaglioni The A=4 system as a test ground for the NCSM/RGM approach within the single-nucleon-projectile basis

- □ NCSM/RGM calculation with $n + {}^{3}H(g.s.)$ and $p + {}^{3}He(g.s.)$, respectively
- \square χ EFT N³LO NN potential: convergence with 2-body effective interaction
- Benchmark: AGS results (+), Deltuva & Fonseca, PRC75, 014005 (2007)

The omission of A = 3 partial waves with $1/2 < J \le 5/2$ leads to effects of comparable magnitude on the AGS results. Need to include target excited (here breakup) states!

NCSM/RGM ab initio calculation of d-⁴He scattering

 $\square N_{max} = 8 \text{ NCSM/RGM} \text{ calculation with } d(g.s.) + {}^{4}\text{He}(g.s.)$

SRG-N³LO potential with $\Lambda = 2.02 \text{ fm}^{-1}$

Calculated two resonances: 2⁺0, 3⁺0

Courtesy S. Quaglioni

• The 1⁺0 g.s. is still unbound: convergence moves towards bound state

NCSM application relevant to physics beyond standard model

One-body contribution:

$$D^{(1)} = \langle 0 | \sum_{i=1}^{A} rac{1}{2} \left[(d_p + d_n) + (d_p - d_n) \, au_z(i)
ight] \sigma_z(i) | 0
angle \ d_p pprox \mp rac{e}{4 \, \pi^2 \, m_N} \, (ar{G}_\pi^0 - ar{G}_\pi^2) \, \ln \left(rac{m_N}{m_\pi}
ight)$$

Two-body contributions:

$$D^{(2)} = \langle 0 | \hat{D}_{z} | \tilde{0} \rangle + \text{c.c.} \qquad \hat{D}_{z} = \frac{e}{2} \sum_{i=1}^{A} (1 + \tau_{i}^{z}) z_{i}$$
$$|\tilde{0}\rangle = \sum_{n \neq 0} \frac{1}{E_{0} - E_{n}} |n\rangle \langle n | H_{\not P T} | 0 \rangle = G(E_{0}) H_{\not P T} | 0 \rangle$$
$$\frac{\bar{G}_{\pi}^{0} \quad \bar{G}_{\pi}^{1} \quad \bar{G}_{\pi}^{2}}{\text{neutron} \quad 0.010 \quad 0.000 \quad -0.010}$$
$$\text{deuteron} \quad 0.000 \quad 0.015 \quad 0.000$$
$$^{3}\text{He} \quad 0.024 \quad 0.023 \quad 0.027$$
$$^{3}\text{H}^{*} \quad -0.024 \quad 0.023 \quad -0.027$$

Stetcu et. al, 2005, 2006

Nucleus	Observable	Model Space	Bare operator	Effective operator
² H	Q_0	$4\hbar\Omega$	0.179	0.270
⁶ Li	$B(E2,1^+0 \rightarrow 3^+0)$	$2\hbar\Omega$	2.647	2.784
⁶ Li	$B(E2,1^{+}0 \rightarrow 3^{+}0)$	$10\hbar\Omega$	10.221	-
⁶ Li	$B(E2,2^+0\rightarrow 1^+0)$	$2\hbar\Omega$	2.183	2.269
⁶ Li	$B(E2,2^+0\rightarrow 1^+0)$	$10\hbar\Omega$	4.502	-
¹⁰ C	$B(E2, 2^+_10 \rightarrow 0^+0)$	$4\hbar\Omega$	3.05	3.08
¹² C	$B(E2, 2^+_10 \to 0^+0)$	$4\hbar\Omega$	4.03	4.05
⁴ He	$\langle g.s. T_{rel} g.s. angle$	$8\hbar\Omega$	71.48	154.51

Applications to trapped systems

Many-body problem in a trap

$$H_A = \sum_{i=1}^A \left(rac{p_i^2}{2m} + rac{1}{2} m \omega^2 r_i^2
ight) + C_0 \sum_{i < j = 1}^A \delta^{(3)} (ec{r_i} - ec{r_j})$$

$$\begin{split} H &= H_{int} + \frac{\vec{P}_{CM}^2}{2mA} + \frac{1}{2}mA\omega^2 \vec{R}_{CM}^2 \\ &= \sum_{i=1}^A \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2\right) + \sum_{i< j=1}^A \left(V_{ij} - \frac{m\omega^2}{2A}(\vec{r}_i - \vec{r}_j)^2\right) + \sum_{i< j< k=1}^A V_{ijk} + \dots \end{split}$$

The two many-body systems formally similar

Two particles in a trap

$$h_2 = rac{p^2}{2\mu} + rac{1}{2}\mu\omega^2 r^2 + V_2(r)$$

T. Stöferle et. al., Phys. Rev. Lett. 96 (2006) 030401

3.0

-1.5

Γ(3/4-ε/2)/Γ(1/4-ε/2) 0.0

EFT for two particles in a trap

Assumption: observables given by

$$rac{\Gamma(3/4-arepsilon/2)}{\Gamma(1/4-arepsilon/2)}=-rac{b}{2}\left(-rac{1}{a_2}+rac{r_0}{b^2}arepsilon+...
ight)$$

In finite model spaces:

$$egin{aligned} V_{LO}(ec{p},ec{p}') &= C_0 \ V_{N\,LO}(ec{p},ec{p}') &= C_2(p^2+p'^2) \ V_{N\,^2LO}(ec{p},ec{p}') &= C_4(p^2+p'^2)^2 \end{aligned}$$

 $C_0 \ C_2 \ C_4 \ \dots$

Constants to be determined in each model space so that select observables are preserved

Running of the two-body spectra (finite range)

Three-body problem up to N²LO ($b/a_2=0$)

 $L^{\pi}=1^{-}$

5.5 2.76 ′^{5.45} ≋ <u>ອ</u>2.74 ສິ 5.4 2.722.75.35 7 4.75 6.9 E_3/ω $\mathrm{E}_{3}\,/\varpi$ ⊶o LO 4.7 - NLO 0-N²LO 6.8 exact 4.65 16.7 20 12 16 20 12 16 8 8

N_{max}

N_{max}

Rotureau et. al., 2010

Exact: Werner and Castin, 2007

Away from unitarity (LO only)

Stetcu et. al., 2007

Three-body at unitarity w/ physical

range

Summary

NCSM:

flexible approach to solving few- and many-body systems
 Jacobi / Slater determinant basis equivalent (energy truncation)
 local / non-local interactions
 extension to accommodate clustering effects
 excellent framework for testing new approaches to describing trapped systems

Future:

- Iots of exciting developments (core SM, RGM extension, WS, etc.)
- EFT/NCSM application to few-body problems