Renormalization Group Techniques and Applications

Achim Schwenk

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS *Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada*

INT Weakly-Bound Systems Workshop, March 10, 2010

Strong interaction physics in the lab and cosmos

Matter at the extremes:

density $\rho \sim$...10¹⁵ g/cm³

proton-rich, neutron-rich, 8 He to Z/N ~0.05

temperatures $T \sim$... 100 MeV

Outline

Effective field theory and renormalization group for nuclear forces

Applications to weakly-bound and neutron-rich nuclei

Similarity renormalization group for nuclei

Λ / Resolution dependence of nuclear forces

with high-energy probes: quarks+gluons

at low energies: complex QCD vacuum

lowest energy excitations: pions, nearly massless, m_{π} =140 MeV "phonons" of QCD vacuum

Λ / Resolution dependence of nuclear forces

with high-energy probes: quarks+gluons

at low energies: complex QCD vacuum

lowest energy excitations: pions, nearly massless, m_{π} =140 MeV "phonons" of QCD vacuum

 Λ chiral momenta $Q \sim \lambda^{-1} \sim m_{\pi}$

 $<< m_{\pi}$ pionless

Λ / Resolution dependence of nuclear forces with high-energy probes: quarks+gluons

Effective theory for NN, 3N, many-N interactions and electroweak operators: resolution scale/Λ-dependent

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \ldots$

Λ_{chiral}

 $<< m_{\pi}$

pionless

momenta $Q \sim \lambda^{-1} \sim m_{\pi}$: chiral effective field theory (EFT) neutrons and protons interacting via pion exchanges and shorter-range contact interactions

typical momenta in nuclei $\sim m_{\pi}$

Λ / Resolution dependence of nuclear forces with high-energy probes: quarks+gluons

Effective theory for NN, 3N, many-N interactions and electroweak operators: resolution scale/Λ-dependent

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \ldots$

 Λ_{chiral} momenta $Q \sim \lambda^{-1} \sim m_{\pi}$

> universal properties of neutrons and cold atoms, reactions at astrophysical energies, loosely-bound halo nuclei,…

 $Q \ll m_{\pi}$: pionless effective field theory large scattering length physics and corrections $\Lambda_{\text{pionless}}$

Chiral EFT for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner,…

Chiral EFT for nuclear forces

First, exciting efforts to connect nuclear forces to underlying QCD Long-range couplings: pion-nucleon coupling g_a Edwards et al. (2006) chiral EFT extrapolation to physical pion mass agrees with experiment variation of nuclear forces with quark masses Beane et al. (2006)

Future possibility: access/constrain 3-neutron forces (3n exp difficult)

Nuclear forces and the Renormalization Group RG evolution to lower resolution/cutoffs

$$
H(\Lambda) = T + V_{\text{NN}}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots
$$

Nuclear forces and the Renormalization Group RG evolution to lower resolution/cutoffs

$$
H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots
$$

exact RG for NN interactions

$$
\frac{d}{d\Lambda} V_{lowk}^{\Lambda}(k',k) = \frac{2}{\pi} \frac{V_{lowk}^{\Lambda}(k',\Lambda)T^{\Lambda}(\Lambda,k;\Lambda^{2})}{1 - (k/\Lambda)^{2}}
$$

logner, Kuo, AS, Furnstahl, ...

$$
\kappa^{2} (fm^{2}) \qquad k^{2} (fm^{2})
$$

$$
\sum_{\substack{0 \text{odd } 4 \text{odd } 12 \text{odd } 8 \text{odd } 2 \text{ odd }
$$

 Λ = 2.0 fm⁻¹ Λ = 1.5 fm⁻¹

 $0(fm)$

 -0.5

low-momentum interactions $V_{low k}(\Lambda)$ with sharp or smooth regulators

 Λ = 3.0 fm⁻¹

AV18

 Λ = 4.0 fm⁻¹

decouples low-momentum physics from high momenta red = short-range repulsion and short-range tensor parts

Low-momentum universality

 \approx universality from different phenomenological potentials RG preserves NN observables and long-range parts decouples low-momentum physics from high momenta

 \approx universality from different chiral N³LO potentials RG preserves NN observables and long-range parts decouples low-momentum physics from high momenta

Weinberg eigenvalue diagnostic

study spectrum of $G_0(z)V|\Psi_{\nu}(z)\rangle = \eta_{\nu}(z)|\Psi_{\nu}(z)\rangle$ at fixed energy z governs convergence $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ can write as Schrödinger equation $(H_0 + \frac{1}{\eta_v(z)} V) |\Psi_v(z)\rangle = z |\Psi_v(z)\rangle$

large cutoffs lead to flipped-potential bound states of - λV for small λ

Weinberg eigenvalue diagnostic

study spectrum of $G_0(z)V|\Psi_\nu(z)\rangle = \eta_\nu(z)|\Psi_\nu(z)\rangle$ at fixed energy z governs convergence $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ can write as Schrödinger equation $(H_0 + \frac{1}{\eta_{\nu}(z)} V) |\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$

large cutoffs lead to flipped-potential bound states of - λV for small λ \rightarrow large $\eta \rightarrow$ strong coupling to high momenta and Born series nonpert.

leads to slow convergence for all nuclei

Outline

Effective field theory and renormalization group for nuclear forces

Applications to weakly-bound and neutron-rich nuclei

Similarity renormalization group for nuclei

Neutron-rich nuclei in the laboratory

specialized targets

highest power at TRIUMF-ISAC

a way to add neutrons to reach extreme neutron-rich nuclei

> Novel forms of matter: halo nuclei

> 8He: most neutron-rich nucleus in the lab

TITAN Penning trap see talk by S. Ettenauer

high precision $\delta m/m \sim 10^{-8}$

Neutron halos

poses extraordinary challenges for theory

Neutron halos

Hyperspherical Harmonics for 6He and Coupled-Cluster theory for 8He describe weakly-bound nuclei with correct asymptotics

but compare convergence to stable ⁴He!

based on N^3LO NN potential, RG cutoff variation \rightarrow need 3N forces

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles, can be excited to resonances

dominant contribution from Δ(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Chiral EFT for 3N forces

Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll A_{\rm b}$ breakdown scale ~500 MeV NN 3N consistent NN-3N interactions LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ $3N,4N$: only 2 new couplings to $N³LO$ leading 3N: N2LO van Kolck (1994), Epelbaum et al. (2002)NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ c_1, c_3, c_4 c_D c_E c_i from πN and NN from Meissner (2007) N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ $\left| \, c_1 = -0.9^{+0.2}_{-0.5} \, , \, c_3 = -4.7^{+1.2}_{-1.0} \, , \; \; c_4 = 3.5^{+0.5}_{-0.2} \, .$ single- Δ excitation = particular c_i N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ c_D , c_E fit to ³H binding energy and ⁴He radius (or ³H beta decay half-life)

Towards the limits of existence - the neutron drip-line

The oxygen anomaly

The oxygen anomaly - not reproduced without 3N forces

Towards 3N forces in medium-mass nuclei Coupled-Cluster theory with 3N forces Hagen et al. (2007) first benchmark for 4 He, work on 16 O in progress

normal-ordered 0-, 1- and 2-body parts of 3N forces dominate

2-body part
$$
\leftarrow
$$
 \leftarrow \leftarrow

residual 3N interaction can be neglected: very promising

occupied orbits in core

The oxygen anomaly - impact of 3N forces

include normal-ordered 2-body part of 3N forces (enhanced by core A)

leads to repulsive interactions between valence neutrons (repulsive based on the Pauli principle)

 $d_{3/2}$ orbital remains unbound

first microscopic explanation of the oxygen anomaly Otsuka, Suzuki, Holt, AS, Akaishi (2009)

Evolution to neutron-rich calcium isotopes

repulsive 3N contributions also key for calcium ground-state energies Holt, Otsuka, AS, Suzuki, in prep.

Evolution to neutron-rich calcium isotopes

repulsive 3N contributions also key for calcium ground-state energies Holt, Otsuka, AS, Suzuki, in prep.

3N mechanism important for shell structure: 2^+ excitation energy in $48Ca$

N=28 shell closure due to 3N and single-particle effects (^{41}Ca)

predict 2^+ excitation energy in $54Ca$ at \sim 3 MeV

Weinberg eigenvalue diagnostic

study spectrum of $G_0(z)V|\Psi_\nu(z)\rangle = \eta_\nu(z)|\Psi_\nu(z)\rangle$ at fixed energy z governs convergence $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ can write as Schrödinger equation $(H_0 + \frac{1}{\eta_{\nu}(z)} V) |\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$

large cutoffs lead to flipped-potential bound states of - λV for small λ \rightarrow large $\eta \rightarrow$ strong coupling to high momenta and Born series nonpert.

leads to slow convergence for all nuclei

Is nuclear matter perturbative with chiral EFT and RG?

conventional Bethe-Brueckner-Goldstone expansion (sums ladders): no, due to nonpert. cores (flipped-V bound states) and off-diag coupling start from chiral EFT and RG evolution: nuclear matter converged at \approx 2nd order, 3N drives saturation

weak cutoff dependence, but need to improve 3N treatment

Bogner, AS, Furnstahl, Nogga (2009)

see talk by K. Hebeler for neutron matter and more

Outline

Effective field theory and renormalization group for nuclear forces

Applications to weakly-bound and neutron-rich nuclei

Similarity renormalization group for nuclei

Similarity RG

unitary transformations to band-diagonal $V_{srg}(\lambda)$ from flow equations Glazek, Wilson (1993), Wegner (1994)

$$
\frac{dH_s}{ds}=[\eta_s,H_s]=[[G_s,H_s],H_s]
$$

evolution driven towards nonzero part of generator $G_{\rm s}$

with flow operator $G_s = T_{rel}$ and resolution $\lambda = s^{-1/4}$ Bogner, Furnstahl, Perry,…

SRG decouples high momenta with similar low-momentum universality

SRG evolution of 3N forces

start from chiral NN and 3N interactions, SRG evolution in harmonic oscillator basis

Jurgenson, Navratil, Furnstahl (2009)

induced many-body interactions consistent with truncation error in EFT

In-medium SRG for nuclei

$$
H = \sum_{12} T_{12} a_1^{\dagger} a_2 + \frac{1}{(2!)^2} \sum_{1234} \langle 12|V|34 \rangle a_1^{\dagger} a_2^{\dagger} a_4 a_3 + \frac{1}{(3!)^2} \sum_{123456} \langle 123|V^{(3)}|456 \rangle a_1^{\dagger} a_2^{\dagger} a_3^{\dagger} a_6 a_5 a_4
$$

normal-order Hamiltonian with respect to reference state (e.g., Hartree-Fock ground state)

$$
H=E_0+\sum_{12}f_{12}\{a_1^{\dagger}a_2\}+\frac{1}{(2!)^2}\sum_{1234}\langle12|\Gamma|34\rangle\{a_1^{\dagger}a_2^{\dagger}a_4a_3\}+\frac{1}{(3!)^2}\sum_{123456}\langle123|\Gamma^{(3)}|456\rangle\{a_1^{\dagger}a_2^{\dagger}a_3^{\dagger}a_6a_5a_4\}
$$

with 0-, 1- and 2-body normal-ordered parts

$$
E_0 = \langle \Phi | H | \Phi \rangle = \sum_{1} T_{11} n_1 + \frac{1}{2} \sum_{12} \langle 12 | V | 12 \rangle n_1 n_2 + \frac{1}{3!} \sum_{123} \langle 123 | V^{(3)} | 123 \rangle n_1 n_2 n_3
$$

\n
$$
f_{12} = T_{12} + \sum_{i} \langle 1i | V | 2i \rangle n_i + \frac{1}{2} \sum_{ij} \langle 1ij | W | 2ij \rangle n_i n_j ,
$$

\n
$$
\langle 12 | \Gamma | 34 \rangle = \langle 12 | V | 34 \rangle + \sum_{i} \langle 12i | V^{(3)} | 34i \rangle n_i ,
$$

In-medium SRG for nuclei

$$
H = \sum_{12} T_{12} a_1^{\dagger} a_2 + \frac{1}{(2!)^2} \sum_{1234} \langle 12|V|34 \rangle a_1^{\dagger} a_2^{\dagger} a_4 a_3 + \frac{1}{(3!)^2} \sum_{123456} \langle 123|V^{(3)}|456 \rangle a_1^{\dagger} a_2^{\dagger} a_3^{\dagger} a_6 a_5 a_4
$$

normal-order Hamiltonian with respect to reference state (e.g., Hartree-Fock ground state)

$$
H=E_0+\sum_{12}f_{12}\{a_1^{\dagger}a_2\}+\frac{1}{(2!)^2}\sum_{1234}\langle12|\Gamma|34\rangle\{a_1^{\dagger}a_2^{\dagger}a_4a_3\}+\frac{1}{(3!)^2}\sum_{123456}\langle123|\Gamma^{(3)}|456\rangle\{a_1^{\dagger}a_2^{\dagger}a_3^{\dagger}a_6a_5a_4\}
$$

with 0-, 1- and 2-body normal-ordered parts and in-medium SRG eqns e.g., for nuclear matter with $\eta = [f, \Gamma]$ see Bogner et al., Kehrein (2006)

$$
\frac{dE_0}{ds} = \frac{1}{2} \sum_{1234} (f_{12} - f_{34}) |\Gamma_{1234}|^2 n_1 n_2 \bar{n}_3 \bar{n}_4,
$$
\n
$$
\frac{df_1}{ds} = \sum_{234} (f_{41} - f_{23}) |\Gamma_{4123}|^2 (\bar{n}_2 \bar{n}_3 n_4 + n_2 n_3 \bar{n}_4),
$$
\n
$$
\frac{d\Gamma_{1234}}{ds} = -(f_{12} - f_{34})^2 \Gamma_{1234} + \frac{1}{2} \sum_{ab} (f_{12} + f_{34} - 2f_{ab}) \Gamma_{12ab} \Gamma_{ab34} (1 - n_a - n_b) + \sum_{ab} (n_a - n_b)
$$
\n
$$
\times \left\{ \Gamma_{a1b3} \Gamma_{b2a4} [(f_{a1} - f_{b3}) - (f_{b2} - f_{a4})] - \Gamma_{a2b3} \Gamma_{b1a4} [(f_{a2} - f_{b3}) - (f_{b1} - f_{a4})] \right\},
$$
\n
$$
approx. \text{ includes many-body forces and sums pp, hh, ph diagrams}
$$

In-medium SRG for nuclei Tsukiyama, Bogner, AS, in prep. decouple 1p1h, 2p2ph,… ApAh sectors from reference state want to suppress pphh and ph couplings,

all other (normal-ordered) couplings annihilate reference state

minimal choice: $\eta(s) = [H^d(s), H(s)] = [H^d(s), H^{od}(s)]$

$$
H^{od}(s) = g^{od}(s) + \Gamma^{od}(s)
$$

$$
\Gamma^{od}(s) = \sum_{pp'hh'} \Gamma_{pp'hh'}(s) a_p^{\dagger} a_{p'}^{\dagger} a_{h} a_{h'} + h.c.
$$

In-medium SRG for nuclei Tsukiyama, Bogner, AS, in prep.

can be used to derive nonperturbative valence-shell effective interactions

Thanks to collaborators

Summary

development of effective field theory and the renormalization group

with approaches from light to heavy nuclei to matter in astrophysics based on the same interactions

3N forces are a frontier for weakly-bound and neutron-rich nuclei

exciting intersections with problems in many related areas

exciting experiments to study neutron-rich matter in the laboratory at rare isotope beam (RIB) facilities worldwide

