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Overview

Introduction

Medium-mass nuclei — saturation properties of NN interactions
[Hagen, TP, Dean, Hjorth-dJensen, Phys. Rev. Lett. 101, 092502 (2008)]

Practical solution to the center-of-mass problem
[Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)]

Does 280 exist?
[Hagen, TP, Dean, Horth-Jensen, Velamur Asokan, Phys. Rev. C 80, 021306(R) (2009)]



Energy scales and relevant degrees of freedom

Degrees of Freedom Energy (MeV)
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Ab-initio approaches to nuclear structure

Green’s function Z=82
Monte Carlo

No-core shell model

Lattice simulations

7=50 |l
.

N=82

Other ab-initio methods for A=16
UMOA (Fuijii, Kamada, Suzuki)
Green’s function method (Barbieri)
Lattice simulations (Dean Lee et al)

Considerable number of interesting nuclei with
closed subshells...



Coupled-cluster method (CCSD)
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Ansatz: W) = e |®) Scales gently (polynomial) with
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Size extensive (error scales with A)

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh
excitations included!

a,b,...

Coupled cluster equations E = (®[H|®) [ ajternative view: CCSD generates
0 = (O} H|D) similarity transformed Hamiltonian with
-7 no 1p-1h and no 2p-2h excitations.
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Peculiarities of coupled-cluster theory for nuclei

Interaction: One of the main questions / aims

1.

A few high-precision potentials available

2. Renormalization scale / scale of external probe provides families of interactions

3. Model-space dependencies must be examined (no “standard” basis sets or model spaces)

Hamiltonian:

1.

Nucleons are fundamental degrees of freedom (single-particle states carry orbital, spin,
and isospin labels)

Hamiltonian is scalar under rotation

Cluster excitation operator is scalar, too
Number of j-shells ~ AZ3 for nucleus with mass numbers A

Much larger model spaces accessible (m-scheme: 8-10 shells; spherical scheme: 20
shells).

1 order of magnitude increase in number of single-particle states.
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Nuclear shell model

Traditional shell model:
* Quantum well + strong spin-orbit force

* “Freeze” core nucleons and work with valence
nucleons

“Ab-initio” methods:

« Shell model provides basis for wave-function
based methods

Harmonic oscillator basis allows to keep all
symmetries within ClI

« Parameters: oscillator frequency, number of
major oscillator shells

 All nucleons active

®




Nuclear potential from chiral effective field theory

Diagrams Ab-initio structure calculations with

potentials from chiral EFT
2N Force 3N Force 4N Force

 A=3, 4: Faddeev-Yakubowski method
* A<10: Hyperspherical Harmonics
« p-shell nuclei: NCSM, GFMC(AV18)

o 162224280 4048Cgq, 48Nj: Coupled cluster,
UMOA, Green’s functions (NN so far)

« Lattice simulations

 Nuclear matter

Questions:

1. Can we compute nuclei from scratch?

2. Role/form of three-nucleon interaction

3. Saturation properties

van Kolck (1994); Epelbaum et al (2002);
Machleidt & Entem (2005);




Precision and accuracy: “He, chiral N3LO (entem & Machieiat
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Results exhibit very weak dependence on the employed model space.
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The coupled-cluster method, in its A-CCSD(T) approximation, overbinds by 150keV;

radius too small by about 0.01fm.

Independence of model space of N major oscillator shells with frequency w:

Nhw > h2A 2/m to resolve momentum cutoff A,
hw < Nh?/(mR?) to resolve nucleus of radius R

Number of single-particle states ~ (RA, )

55



Energy/nucleon [MeV]

Nuclear matter with low-momentum interactions
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« Saturation of nuclear matter with low-momentum NN and NNN forces.
» AImost no cutoff dependence - physics almost complete
 Perturbative calculation already gives good results.

Bogner, Furnstahl, Schwenk & Nogga, arXiv:0903.3366 10



Ground-state energies of medium-mass nuclel
CCSD results for chiral N3LO (NN only)

Nucleus|| £/A| V/A[AE/A
‘He |[[-5.99(-22.75 1.08
50 [|-6.72]-30.69] 1.25
WCa |-7.72(-36.40| 0.84
¥Ca |[-7.40]-37.97| 1.27
Ni  [[-6.02]-36.04] 1.21

[Hagen, TP, Dean, Hjorth-dJensen, Phys. Rev. Lett. 101, 092502 (2008)]

Main results

1.

Well converged CCSD results with respect to size of model space (< 1% change in
binding energy when going from 14 to 15 oscillator shells.

Three-nucleon force and triples corrections expected to yield ~1MeV additional
binding?

Mirror nuclei 8Ca and exotic “8Ni differ by 1.38 MeV / A - close to mass-table
predictions

How do corrections due to three-body clusters modify this picture?



-280

-290

Ground-state energies of medium-mass nuclel
CCSD results for chiral N3LO (NN only)
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Nucleus | CCSD N-CCSD(T) Experiment
“He 5.99 6.39 7.07
160 6.72 7.56 7.97
40Ca 7.72 8.63 8.56
48Ca 7.40 8.28 8.67

26 2% 30 32 34
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Compare 60 to different approach
Fujii et al., Phys. Rev. Lett. 103,
182501 (2009)

B/A=6.62 MeV (2 body clusters)
B/A=7.47 MeV (3 body clusters)

[Hagen, TP, Dean, Hjorth-dJensen, Phys. Rev. Lett. 101, 092502 (2008)]



Center-of-mass coordinate

The nuclear Hamiltonian is invariant under rotations and translations

Approach that preserves both symmetries:
© Jacobi coordinates
® Antisymmetrization very expensive -> limited to A<10 or so

[Faddeev Yakubowsky; Hyperspherical Harmonics; Manchester group’s CCM].

Antisymmetry best dealt within second quantization:

® No single-particle basis available that consists of simultaneous eigenstates of the
angular momentum operator and the momentum operator.

© Within a complete Nhw oscillator space, the wave function is guaranteed to factorize
YV = PemWin
Intrinsic wave function y,, invariant under translation

Center-of-mass wave function gy, is Gaussian whose width is set by the oscillator
length of the employed oscillator basis

The factorization is key. The form of y_, is irrelevant.



Center-of-mass coordinate (cont'd)

Intrinsic nuclear Hamiltonian H;, = 1T — 1., +V .

_ (Pi — 15)° L
= > ( S V=)

1<i<j<A

Obviously, H,, commutes with any center-of-mass Hamiltonian H_,.

Situation: The Hamiltonian depends on 3(A-1) coordinates, and is solved in a model space
of 3A coordinates. What is the wave function in the center-of-mass coordinate?

Q:How can one demonstrate the factorization of wave function y:

A: Find a suitable center-of-mass Hamiltonian H_,, whose eigenstate is y.

Our approach:

Demonstrate that <H_, > = 0 for a center-of-mass Hamiltonian with zero-energy ground
state. 1 5o 3
HCHl (CD) — TCII] _|_ 577)414&) R - 5 h(:)

cm

Frequency W to be determined.



Toy problem

Two particles in one dimension
with intrinsic Hamiltonian

H = % + V(z)
V(z) = —Voexp(—(2/1)%)

Single-particle basis of 00lg———""
oscillator wave functions with -
m,n=0,..,N

D, (21 /1) Py (22/1) 0.0001;

0.001k

le-05k

Results: F
1. Ground-state is factored le-06
with s, =1 j
. p 1e-07:

/l/) A — Z S 4 /l/) ((“{13 /l/} 1(1{)
j le-08 3

2. CoM wave function is le-09}

approximately a Gaussian

le-10




Determination of g,

Assumption: y_, is (approximately) a Gaussian for all model-space frequencies
» Gaussian center-of-mass wave function is the zero-energy ground state of
~ 1 ~2 12 3
HCII] (UJ) — TCIIl _|_ §mAw RCH] - §hw

» Determine unknown frequency from from taking expectation value of identity

3 w? . 3.
Hcm(w) + §hw T Tcm — E (Hcm(w) ‘I' §hw T Tcm)

» Use Ecm(ﬂ) — ()
<Tcm> — %h@

Two possible frequencies

2 4 4
ho = hw + §Ecm(w) + \/g(Ecm(w))2 + ghchm(w)



E (MeV)

Gaussian center-of-mass wave function
160 with V|« (1.8 fm-1, smooth) within CCSD
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Frequency W of Gaussian very
weakly dependent on model
space

Kinetic energy T, is % of
oscillator spacing

<H_,> vanishes (size > -10 keV)

The intrinsic Hamiltonian does not reference the center-of-mass coordinate.

Yet, the resulting center-of-mass wave function is a Gaussian.



Approximate factorization also for “hard” interactions:
“He, %0, and “8Ca from Entem & Machleidt’s chiral N3LO
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4
Note: spurious states are separated by about He 19.1 MeV
15-20 MeV >> E_. 160 16.5 MeV
No understanding of Gaussian CoM wave 48Ca 14.9 MeV

function (yet).
[Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)]



Neutron drip line in oxygen isotopes

Experimental situation

« ” : =1l 2*Ne | Ne | 2Ne | %2Ne | ’Ne [2Ne [ 2°Ne | **Ne | *'Ne [*2Ne *Ne
« “Last” stable oxygen isotope 24O -
21F 22F 23F 24F 25F 26F 27F 29F 31F
« 250 unstable (Hoffman et al 2008) —
200 210 220 230 240 :D
« 26280 not seen in experiments
19N 20N 21N 22N 23N
« 31F exists (adding on proton shifts drip
. 18C 19C ZOC 22C
line by 6 neutrons!?)

Theoretical situation
« USD interaction predicts stable 26280 (Brown)
» sf-pf shell calculation can reproduce data after adjusting TBME (Otsuka et al.)

» Shell model w/ continuum couplings employs two different interactions for oxygen isotopes
near and far away from b-stability to reproduce data (Volya & Zelevinsky)

 Shell model with 3NF: 240 is last bound isotope (Otsuka, Suzuki, Holt, Schwenk, Akaishi).
Most theoretical papers rule out a stable 280.

No approach flawless, i.e. no approach includes everything (continuum effects, 3NFs, no
adjustments of interaction)
Theoretical difficulties: uncertainties in the effective interaction, quantify the resulting errors.

—> ab-initio calculations: coupled-cluster can address closed sub-shell nuclei 2224280 with
chiral interactions; study cutoff dependence



Examples of theoretical calculations

0t -34727 5/2+34910 R
+ .

2+ -36860
220 1/2+-37349 1/2+ -37297
23 2+ -39840 3/2+ -39920 .
O 3/2+ -40708 0T -40274
0+ -41710 0t -41689

by e
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Volya & Zelevinsky, Phys. Rev. Lett. 94 (2005) 052501: Continuum + empirical interaction
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Otsuka, Suzuki, Holt, Schwenk, Akaishi, arXiv:0908.2607: 3NF within small model space



Ground-State Energy [MeV|

Solution of *H and 4He with induced and initial 3NF
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Jurgenson, Navratil & Furnstahl, Phys. Rev. Lett. 103, 082501 (2009)
Cutoff-dependence hints at missing physics, specifically short- 21

ranged many-body forces.
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Neutron-rich oxygen isotopes
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N,=500 MeV potential converges in about 15 major oscillator shells

N\,=600 MeV potential converges in about 20 shells
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Summary of results

Energies 10 220 240 250

(Ay =500 MeV)

Eo 24.11| 50.37| 56.19| 71.58

AFccsp -144.77(-175.79]-190.39|-207.67 | ~90% of correlation energy
AFE3 -13.31] -19.22| -19.64| -19.85|¢— ~10% of correlation energy
) -120.66|-144.64[-153.84(-155.94

(Ay =600 MeV)

Eo 22.08| 46.33| 52.94| 68.57

AFccsp -119.04|-156.51]-168.49|-182.42

AFs -14.95| -20.71| -22.49| -22.86

) -111.911-130.89]-138.04|-136.71

Experiment -127.62(-162.03|-168.38

Estimate of theoretical uncertainties:
1. Finite model space ~2MeV
2. Truncation at triples clusters ~2MeV (educated guess)

3. Omission of three-nucleon forces (cutoff dependence) ~15MeV

[Hagen, TP, Dean, Horth-Jensen, Velamur Asokan, Phys. Rev. C 80, 021306(R) (2009)]



Is 280 bound relative to 240?
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Too close to call. Theoretical uncertainties >> differences in binding energies.
Chiral potentials by Entem & Machleidt’'s different from G-matrix-based interactions.
Ab-initio theory cannot rule out a stable 220.

Three-body forces largest potential contribution that decides this question.



Summary

Saturation properties of medium-mass nuclei:
- “Bare” interactions from chiral effective field theory can be converged in large model spaces
« Chiral NN potentials miss ~0.4 MeV per nucleon in binding energy in medium-mass nuclei

Practical solution to the center-of-mass problem:

« Demonstration that coupled-cluster wave function factorizes into product of intrinsic and
center-of-mass state

« Center-of-mass wave function is Gaussian
« Factorization very pure for “soft” interactions and approximate for “hard” interaction

Neutron-rich oxygen isotopes:
« Ab-initio theory cannot rule out a stable 280
« Greatest uncertainty from omitted three-nucleon forces

Outlook

Towards heavier masses (Ni, Sn, Pb isotopes) & inclusion of 3NFs
Single-particle energies from ab-initio calculations
Drip-line nuclei (He, Li, O, Ca)
a-particle excitations (low-lying 0* states in doubly magic nuclei)



