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Is there universality in molecular collisions at
finite temperature?
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Intermolecular interactions
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Applications of ultracold molecules:

Cold and Ultracold Molecules: Science, Technology, and Applications,
L. Carr, D. DeMiille, R. V. Krems, and J. Ye,
New Journal of Physics 11, 055049 (2009).

Cold Controlled Chemistry,
R. V. Krems,
Physical Chemistry Chemical Physics 10, 4079 (2008).

Quo vadis, cold molecules?
J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws,
European Physical Journal D 31, 149 (2004).

COLD
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Applications
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Thermal isolation = confinement of molecules
by dc electric, magnetic or laser fields

Cooling experiments = molecular collisions
in external field traps

Elastic collisions lead to cooling
Reactive collisions lead to trap loss

It is critical to understand the effects of
external fields on elastic, inelastic and

chemically reactive collisions of molecules
at cold (T1 K) and ultracold (< 0.001 K) temperatures
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Since 1960, this is called Arthurs-Dalgarno representation




H-matrix in the Arthurs-Dalgarno representation
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Hamiltonian in the presence of an external field
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Hamiltonian in the presence of an external field
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HV = BV
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Couple all angular momenta to re-write

J A B
=2 > ) Crijti(oe")
J i
Since 1960, this is called Arthurs-Dalgarno representation




H:HA—I—HB—I—V

HV = BV

V=3 Fijé)e;

]

Compute gbA and qu in the molecule-fized coordinate frame

Couple all angulw momenta to re-write

Y Ciieteb)
J

Since 1960, this is called ArthuNgDalgarno representation



H:HA—l—HB—I—V

HV = BV

V=3 Fijé)e;

Y J space-fived coordinate frame

Compute gbA and qu m the medecsletored coordmde frone

Couple all angulw momenta to re-write

Y Ciieteb)
J

Since 1960, this is called ArthuNgDalgarno representation



Fully uncoupled space-fixed representation - example:
Collision of two molecules in the 2 state
V=Y Fo,
1

¢i = [NAMN, ) |SAMg, ) INgM ) [SgMgy)|lmy)

where all the momenta are projected onto the field axis.

R. V. Krems and A. Dalgarno, JCP 120, 2296 (2004).



Fully uncoupled space-fixed representation - example:

Collision of two molecules in the 23 state

V=> " F¢

¢i = [NAMN, ) |SAMg, ) INgM ) [SgMgy)|lmy)

where all the momenta are projected onto the field axis.

In order to evaluate the matrix of H, all terms in the Hamiltonian
must be written in the space-fixed coordinate frame.

R. V. Krems and A. Dalgarno, JCP 120, 2296 (2004).
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Collistons of molecules
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Any interaction in the Hamiltonian can be represented
as a direct product of spherical tensors defined in
the space-fixed coordinate frame



Any interaction in the Hamiltonian can be represented
as a direct product of spherical tensors defined in
the space-fixed coordinate frame

The collision problem of molecules in external fields is
most conveniently formulated
in the fully uncoupled space-fixed representation



Li + HF — LiF + H



Energy diagram of the reaction Li + HF(v=0, j=0)
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The problem with Jacobi coordinates

1 d? 1 d? IZ 72

H = | | -V (r, R, 0)

C2udR2 2mdr? ' 2uR? T 2mr?




Solution: the hyperspherical coordinates

Mass Scaled Jacobi Coordinates

Delves Hyperspherical Coordinates < Scaled Jacobi:

PP = (S22

S
0, = tan (L
= (s)



How do the new coordinates work?

AC+B
A+B+C
™
’ Y,
e 0
o~ ff
AB+C

A+B+C

AB

AC



Basis:
Xavj(ea;p)‘ij>‘€M€> = Xavj(Haf;p)Yij(fa)Y€M€(iéa)

where

H chj(ﬁa;p) — Ecwj(p)Xavj(Ha;p)

Note that this basis is not orthonormal because the
functions of different chemical arrangements overlap.
This is taken care of by the transformation:

‘§n> \/_ E Xav]M AM, nXav](Haap)‘]M >‘€M€>

]M €M€
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Quantum theory of chemical reactions in the presence of electromagnetic
fields

T. V. Tscherbul® and R. V. Krems
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

(Received 29 April 2008; accepted 12 June 2008; published online 21 July 2008)

We present a theory for rigorous quantum scattering calculations of probabilities for chemical
reactions of atoms with diatomic molecules in the presence of an external electric field. The
approach is based on the fully uncoupled basis set representation of the total wave function in the
space-fixed coordinate frame, the Fock—Delves hyperspherical coordinates, and the adiabatic
partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions
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Hamiltonian in the presence of an external field

X ok ok | X
X ok ok | X
X ok ok | X I
X ok ok | X
X K | kXK
X X X K | kKX
X X X K | kKX X X
X K | kKX
X ok |k | X
N X ok |k | X
N X ok |k | X
X ok |k | X



Collisions in laser fields



Polar molecules in a microwave cavity
Molecular Hamiltonian: H,,, = BIN?
Field Hamiltonian: Hy = hw(aal — N)
Molecule - Field Interaction: Hyq ¢ = _deg (a + aT) COS X

2VN
Basis set: |[NMpy)|N +n)

The matrix elements:

(N +n[{NMy|Hy 1

WIN +n'y ~ (N My cos x|N'Mjy) x
X (5n,n’+1 + dn,n’—l)

(NMy]cos xIN"My) ~ dpp g (5N,N’+1 + 5N,N'—1)
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Polar molecule in a microwave cavity
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Energy (in units of B))

Polar molecule in a microwave cavity
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® no absolute ground state
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Challenges for theory of molecular
collisions in external fields

Large basis sets = need decoupling approximations

Lack of accurate intermolecular potentials =
need experimental data

Lack of rigorous theories connecting short-range
intferaction physics and long-range dynamics



Is there universality in molecular collisions at
finite temperature?





