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Is there universality in molecular collisions at !
finite temperature?  !



hyperfine splitting is !hf!0.0038 K. OH also has an electric
dipole moment "!1.668 D. Throughout this paper we use
kelvin "K# as the energy unit, except in the instances of ther-
mally averaged observables. For reference, 1 K

=0.695 cm!1.

B. Stark effect in OH

As noted above, the distinguishing feature of the Stark

effect is that it mixes molecular states of opposite parity

separated by the #-doublet splitting. A consequence of this is
that the Stark energies vary quadratically with electric field

at low fields, and linearly only at higher fields. The field

where this transition occurs is given roughly by equating the

field’s effect "! E ·E! to the #-doublet splitting. $Here "! E is the
molecule’s electric dipole moment, and E! is the field. In OH,
this field is approximately E0!! /2"E!1000 "V/cm#.%
The Stark Hamiltonian has the form

HS = ! "! E · E! , "3#

where we take the field to be in the ẑ direction. In the basis in

which $ has a definite sign, the matrix elements are well

known $15%:

&JMJ$'HS'JMJ$( =
! "EE$MJ

J"J + 1#
. "4#

In the Stark effect there is a degeneracy between states with

the same sign of $MJ, meaning ±MJ are degenerate in an

electric field. We can recast the Stark Hamiltonian into the

J-parity basis set from Eq. "1#. Doing so, we find

&JMJ$%'HS'JMJ$%!( =
! "EE$MJ

J"J + 1# )1 ! %%!
2

* . "5#

In this expression, the factor "1!%%!# /2 explicitly represents
the electric field coupling between states of opposite parity,

since it vanishes for %=%!.
Finally, using the definition of the F-parity basis in Eq.

"2#, we arrive at the working matrix elements of the Stark
effect:

&FMF%'HS'F!MF%!( = ! "EE)1 + %%!"! 1#J+J!+2$+1

2
*

&"! 1#J+J!+F+F!+I!MF!$+1$F,F!,J,J!%

& ) J 1 J!

!$ 0 $!
*) F! 1 F

MF 0 !MF

*
&+F F! 1

J! J I
, . "6#

In this notation $j1 , j2 ,…%=-"2j1+1#"2j2+1#"¯#. Figure 2
shows the energy levels of OH in the presence of an electric

field. Both parity states are shown, labeled e and f . An es-

sential point of Fig. 2 is that the e and f states repel as the

electric field in increased. This means that all of the f "e#
states increase "decrease# in energy as the field in increased,
implying that states of the same parity stay close together in

energy as the field is increased. This fact has a crucial effect

on the inelastic scattering as we will show.

The highest-energy state in Fig. 2 is the stretched state

with quantum numbers 'FMF%(= '22! (. It is this state whose
cold collisions we are most interested in, because "i# it is
weak-field seeking, and "ii# its collisions at low temperature
result almost entirely from long-range dipole-dipole interac-

tions $5%. Molecules in this state will suffer inelastic colli-
sions to all of the other internal states shown. The rate con-

stant shown in Fig. 1 is the sum of all rate constants for all

such processes.

C. Zeeman effect in OH

When OH is in an external magnetic field the electron’s

orbital motion and intrinsic magnetic dipole moment both

interact with the field. The interaction is described by the

Zeeman Hamiltonian which is

HZ = ! !B · B = "0"L + geS# · B . "7#

Here "0 is the Bohr magneton and ge is the electron’s g

factor "ge!2.002#. As above, we assume the field to be in
the laboratory ẑ direction. In the J basis, the Zeeman Hamil-

tonian takes the form $16%

&JMJ$'HZ'JMJ$( =
"0B"# + ge'#$MJ

J"J + 1#
. "8#

This is quite similar to the equivalent expression "4# for the
Stark effect, except that the electron’s g factor plays a role.

FIG. 2. Stark effect for the ground state of OH with the hyper-

fine structure accounted for. In zero field the f states and the e states

are separated by the #-doublet energy. The gray line indicates the
state of interest for our analysis, the '22! ( state. An important fea-
ture of this interaction is that the opposite parity states repel and

thus like parity states stay close together in energy.
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Applications of ultracold molecules:!

Cold 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Quo 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European Physical Journal D 31, 149 (2004). 



Thermal isolation = confinement of molecules !
by dc electric, magnetic or laser fields !



Thermal isolation = confinement of molecules !
by dc electric, magnetic or laser fields !

Cooling experiments = molecular collisions!
in external field traps!



Thermal isolation = confinement of molecules !
by dc electric, magnetic or laser fields !

Cooling experiments = molecular collisions!
in external field traps!

Elastic collisions lead to cooling!
Reactive collisions lead to trap loss!



Thermal isolation = confinement of molecules !
by dc electric, magnetic or laser fields !

Cooling experiments = molecular collisions!
in external field traps!

Elastic collisions lead to cooling!
Reactive collisions lead to trap loss!

It is critical to understand the effects of !
external fields on elastic, inelastic and !

chemically reactive collisions of molecules !
at cold (~1 K) and ultracold (< 0.001 K) temperatures!
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Since 1960, this is called Arthurs-Dalgarno representation
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Fully uncoupled space-�xed representation - example:

Collision of two molecules in the 2Σ state

Ψ =
∑

i

Fiφi

φi = |NAMNA
〉|SAMSA

〉|NBMNB
〉|SBMSB

〉|lml〉

where all the momenta are projected onto the �eld axis.

In order to evaluate the matrix of H, all terms in the Hamiltonian
must be written in the space-�xed coordinate frame.

R. V. Krems and A. Dalgarno, JCP 120, 2296 (2004).
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The collision problem of molecules in external fields is!
most conveniently formulated !

in the fully uncoupled space-fixed representation !



Li + HF → LiF + H



0.243 eV

0.221 eV

!E = 0.080 eV

HF(v=0)

LiF(v=0)

v=1

Energy diagram of the reaction Li + HF(v=0, j=0)

j

Electric field



The problem with Jacobi coordinates



Solution: the hyperspherical coordinates



How do the new coordinates work? 



Basis:!

!i!";#" = #
n

Tni$$n% , !18"

where $$n% are some orthonormal basis functions. Substitut-
ing this expansion into Eq. !13" leads to a matrix eigenvalue
problem,

#
n!

&'$n$Had!#"$$n!% − %i!#"&nn!(Tn!i = 0. !19"

The eigenvalues %i!#" and eigenvectors Tni can be found
once the adiabatic Hamiltonian matrix is specified in the ba-
sis $$i%. In order to construct this matrix, we introduce a basis
set that simultaneously includes primitive functions defined
in all chemical arrangements,62,63

'(vj!)(;#"$jMj%$!M!% = '(vj!)(;#"Y jMj
!r̂("Y!M!

!R̂(" ,

!20"

where the uncoupled SF basis functions are direct products
of the spherical harmonics Y jMj

!r̂(" and Y!M!
!R̂(", and the

FD rovibrational eigenfunctions and eigenenergies are de-
fined as

H̃mol '(vj!)(;#" = %(vj!#"'(vj!)(;#" . !21"

The projection of the total angular momentum onto the
electric-field axis M =Mj +M! is rigorously conserved for
collisions in parallel fields.48,49 Therefore, the basis functions
!20" corresponding to different values of M are not coupled,
and the Schrödinger equation !14" can be solved indepen-
dently for each M.

We emphasize that the basis functions !20" are not the
eigenfunctions of the total angular momentum operator and
that the angular momentum projections Mj and M! are de-
fined with respect to the SF quantization axis determined by
the direction of the external field. All previous methods for
solving the reactive scattering problem used the total angular
momentum representation of Arthurs and Dalgarno64 in the
body-fixed !BF" coordinate system. The quantization axis in
the BF approach is directed along the Jacobi vector R(. This
choice simplifies the evaluation of the matrix elements of the
interaction potential. In addition, chemical reactions with
near-collinear transition states are determined by a limited
number of the BF projections of the total angular
momentum,65 which leads to a substantial reduction of the
number of scattering channels. External electric fields break
the isotropy of space and couple states corresponding to dif-
ferent total angular momenta and inversion parities. There-
fore, the total angular momentum representation64,66 offers
no advantage. Krems and Dalgarno49 showed that in the
presence of an external field, it is more convenient to work
directly in the SF frame as this leads to simpler expressions
for the matrix elements of the molecule-field interaction. Al-
though the matrix elements of the interaction potential in the
SF basis are more complicated,49 they can be obtained from
the BF matrix elements using a simple transformation as
shown in Sec. II C below.

We note that the basis !20" is not orthogonal because the
functions '(vj!)( ;#" of different ( overlap at small #.53 An

appropriate orthogonal basis set can be defined in terms of
the functions !20" following the symmetric orthogonalization
procedure,65,67,68

$$n% =
1

)*n
#

jMj,!M!

X(vjMj!M!,n'(vj!)(;#"$jMj%$!M!% , !22"

where *n and X(vjMj!M!,n are, respectively, the real eigenval-
ues and eigenvectors of the overlap matrix O,

XTOT = + , !23"

where +=diag!*1 , . . . ,*n" and the symmetric and orthogo-
nal overlap matrix of the primitive basis functions !20" is
given by

O(vjMj!M!,(!v!j!Mj!!!M!!

= ''(vj!)(;#"$'jMj$'!M!$

,'(!v!j!!)(!;#"%$j!Mj!%$!!M!!% . !24"

It is easy to verify that the functions defined by Eq. !22"
are orthogonal, and therefore can be used to expand the adia-
batic surface functions in Eq. !13". The matrix elements of
the adiabatic Hamiltonian !19" can be obtained from Eq. !22"

'$n$Had!#"$$n!%

=
1

)*n*n!
#

(,v,j,Mj,!,M!

#
(!,v!,j!,Mj!,!!,M!!

X(vjMj!M!,n

,X(!v!j!Mj!!!M!!,n!''(vj!)(;#"$'jMj$'!M!$Had!#"

,$'(!v!j!!)(!;#"%$j!Mj!%$!!M!!% . !25"

Because the adiabatic functions calculated at different #
are not orthogonal, we need an additional transformation be-
tween the adiabatic functions of the adjacent propagation
sectors !say, #k−1 and #k". The transformation is derived in
Sec. II E and has the form

&S!#k−1,#k"(ii! = '!i!";#k−1"$!i!!";#k"% , !26"

where the integration is carried out over all variables except
#. Expanding the adiabatic surface functions as in Eqs. !18"
and !22", we find

&S!#k−1,#k"(ii!

= #
n,n!

TniTn!i!
1

)*n*n!
#

(,v,j,Mj,!,M!

#
(!v!j!Mj!!!M!!

,X(vjMj!M!,n!#k−1"X(!v!j!Mj!!!M!!,n!!#k"

, ''(vj!)(;#k−1"$'jMj$'!M!$'(!v!j!!)(!;#k"%

,$j!Mj!%$!!M!!% . !27"

Unlike the overlap matrix calculated at fixed # !24", the over-
lap matrix of the primitive functions on the right-hand side
of Eq. !27" is not symmetric. We denote this matrix as
OSF!#k−1 ,#k". It is discussed in more detail in the next sec-
tion.

In summary, the adiabatic eigenvalue problem can be
solved in three steps. First, the overlap matrix of the primi-
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Note that this basis is not orthonormal because the 
functions of different chemical arrangements overlap.!
This is taken care of by the transformation:!
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!20" corresponding to different values of M are not coupled,
and the Schrödinger equation !14" can be solved indepen-
dently for each M.

We emphasize that the basis functions !20" are not the
eigenfunctions of the total angular momentum operator and
that the angular momentum projections Mj and M! are de-
fined with respect to the SF quantization axis determined by
the direction of the external field. All previous methods for
solving the reactive scattering problem used the total angular
momentum representation of Arthurs and Dalgarno64 in the
body-fixed !BF" coordinate system. The quantization axis in
the BF approach is directed along the Jacobi vector R(. This
choice simplifies the evaluation of the matrix elements of the
interaction potential. In addition, chemical reactions with
near-collinear transition states are determined by a limited
number of the BF projections of the total angular
momentum,65 which leads to a substantial reduction of the
number of scattering channels. External electric fields break
the isotropy of space and couple states corresponding to dif-
ferent total angular momenta and inversion parities. There-
fore, the total angular momentum representation64,66 offers
no advantage. Krems and Dalgarno49 showed that in the
presence of an external field, it is more convenient to work
directly in the SF frame as this leads to simpler expressions
for the matrix elements of the molecule-field interaction. Al-
though the matrix elements of the interaction potential in the
SF basis are more complicated,49 they can be obtained from
the BF matrix elements using a simple transformation as
shown in Sec. II C below.

We note that the basis !20" is not orthogonal because the
functions '(vj!)( ;#" of different ( overlap at small #.53 An

appropriate orthogonal basis set can be defined in terms of
the functions !20" following the symmetric orthogonalization
procedure,65,67,68

$$n% =
1

)*n
#

jMj,!M!

X(vjMj!M!,n'(vj!)(;#"$jMj%$!M!% , !22"

where *n and X(vjMj!M!,n are, respectively, the real eigenval-
ues and eigenvectors of the overlap matrix O,

XTOT = + , !23"

where +=diag!*1 , . . . ,*n" and the symmetric and orthogo-
nal overlap matrix of the primitive basis functions !20" is
given by

O(vjMj!M!,(!v!j!Mj!!!M!!

= ''(vj!)(;#"$'jMj$'!M!$

,'(!v!j!!)(!;#"%$j!Mj!%$!!M!!% . !24"

It is easy to verify that the functions defined by Eq. !22"
are orthogonal, and therefore can be used to expand the adia-
batic surface functions in Eq. !13". The matrix elements of
the adiabatic Hamiltonian !19" can be obtained from Eq. !22"

'$n$Had!#"$$n!%

=
1

)*n*n!
#

(,v,j,Mj,!,M!

#
(!,v!,j!,Mj!,!!,M!!

X(vjMj!M!,n

,X(!v!j!Mj!!!M!!,n!''(vj!)(;#"$'jMj$'!M!$Had!#"

,$'(!v!j!!)(!;#"%$j!Mj!%$!!M!!% . !25"

Because the adiabatic functions calculated at different #
are not orthogonal, we need an additional transformation be-
tween the adiabatic functions of the adjacent propagation
sectors !say, #k−1 and #k". The transformation is derived in
Sec. II E and has the form

&S!#k−1,#k"(ii! = '!i!";#k−1"$!i!!";#k"% , !26"

where the integration is carried out over all variables except
#. Expanding the adiabatic surface functions as in Eqs. !18"
and !22", we find

&S!#k−1,#k"(ii!

= #
n,n!

TniTn!i!
1

)*n*n!
#

(,v,j,Mj,!,M!

#
(!v!j!Mj!!!M!!

,X(vjMj!M!,n!#k−1"X(!v!j!Mj!!!M!!,n!!#k"

, ''(vj!)(;#k−1"$'jMj$'!M!$'(!v!j!!)(!;#k"%

,$j!Mj!%$!!M!!% . !27"

Unlike the overlap matrix calculated at fixed # !24", the over-
lap matrix of the primitive functions on the right-hand side
of Eq. !27" is not symmetric. We denote this matrix as
OSF!#k−1 ,#k". It is discussed in more detail in the next sec-
tion.

In summary, the adiabatic eigenvalue problem can be
solved in three steps. First, the overlap matrix of the primi-
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fields
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We present a theory for rigorous quantum scattering calculations of probabilities for chemical
reactions of atoms with diatomic molecules in the presence of an external electric field. The
approach is based on the fully uncoupled basis set representation of the total wave function in the
space-fixed coordinate frame, the Fock–Delves hyperspherical coordinates, and the adiabatic
partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions
are expanded in basis sets of hyperangular functions corresponding to different reaction
arrangements, and the interactions with external fields are included in each chemical arrangement
separately. We apply the theory to examine the effects of electric fields on the chemical reactions of
LiF molecules with H atoms and HF molecules with Li atoms at low temperatures and show that
electric fields may enhance the probability of chemical reactions and modify reactive scattering
resonances by coupling the rotational states of the reactants. Our preliminary results suggest that
chemical reactions of polar molecules at temperatures below 1 K can be selectively manipulated
with dc electric fields and microwave laser radiation. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2954021$

I. INTRODUCTION

An important goal of modern chemical physics is to
achieve external control over dynamics of elementary chemi-
cal processes.1–7 Manipulating chemical transformations by
external dc fields or laser radiation is at the heart of mode-
selective chemistry,1 chemical stereodynamics,3,4 and quan-
tum coherent control of molecular dynamics.6 External elec-
tromagnetic fields can be used to orient and align molecules,
which restricts the symmetry of the electronic interaction be-
tween the reactants in the entrance reaction channel and may
result in suppression or enhancement of reaction rates, the
phenomenon known as the “steric effect.”8–10 Loesch and
co-workers3,11,12 and Friedrich and Herschbach7 demon-
strated that rotationally cold polar molecules in the ! elec-
tronic state can be effectively oriented by dc electric fields
which was used to study steric effects in molecular
spectroscopy,13 inelastic scattering,7 and chemical reaction
dynamics.3,12 Loesch and Stienkemeier used a combination
of dc electric fields and infrared radiation pumping to ex-
plore the effects of molecular alignment in the Li+HF
!v=1, j=1" chemical reaction. Their results indicated that
side-on collisions between HF molecules and Li atoms are
more likely to result in the reaction than end-on collisions.12

The steric effects observed in experiments with thermal mo-
lecular beams are, however, usually weak3 because the ki-
netic energy of the reactants greatly exceeds the perturba-
tions induced by dc electric fields, even for very polar and
heavy molecules such as ICl.12

Friedrich and Herschbach have shown that molecules
can also be aligned by laser radiation.14 The laser alignment

method can be applied to both polar and nonpolar
molecules.15 Larsen et al.16 demonstrated that significant
alignment can be achieved with laser fields of 1012 W /cm2.
The degree of alignment can be quantified by photoionizing
the aligned molecules and examining the angular distribu-
tions of the photofragments.15,16 Laser-field alignment has
been used to produce high-order harmonics with specific po-
larization emitted by N2, O2, and CO2 molecules.17 Laser-
field alignment can also be used to manipulate the rotational
motion of molecules18 or control the branching ratios of the
photodissociation products.19 The interaction of molecules
with an off-resonant laser light is proportional to the square
of the electric-field strength, and substantial alignment can
be achieved only with very powerful lasers. Because most
lasers have short duty cycles, laser-aligned molecules are
normally produced with low densities insufficient for scatter-
ing experiments.4,5 Other methods, such as collisional align-
ment in supersonic expansions,4 produce large quantities of
aligned molecules, but the degree of alignment in these
experiments20 is often insignificant and difficult to quantify.

The effects of external fields on molecular collisions are
significantly more pronounced at low temperatures. The de-
velopment of experimental techniques for cooling molecules
to temperatures near or below 1 K has opened up new pos-
sibilities to study controlled chemical reactions.21 Chemical
reactions of molecules at cold and ultracold temperatures are
accelerated by resonances,22,23 tunneling,2,22,23 threshold
phenomena,24 quantum interference,25 and many-body
dynamics.25,26 With the development of novel experimental
methods for manipulating molecules with electromagnetic
fields such as Stark deceleration,27,28 magnetic or electro-
static guiding,29 and the design of a molecular synchrotron,30

it has become possible to study cold chemical reactions ina"Electronic mail: timur@chem.ubc.ca.
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Collisions in laser fields!



Polar molecules in a microwave cavity

Molecular Hamiltonian: Hmol = BN2

Field Hamiltonian: Hf = ~ω(ââ† − N̄)

Molecule - Field Interaction: Hmol,f = − dε0
2
√

N̄

(
â + â†

)
cos χ

Basis set: |NMN〉|N̄ + n〉

The matrix elements:

〈N̄ + n|〈NMN |Hmol,f|N ′M ′
N〉|N̄ + n′〉 ∼ 〈NMN | cos χ|N ′M ′

N〉 ×
×

(
δn,n′+1 + δn,n′−1

)
〈NMN | cos χ|N ′M ′

N〉 ∼ δMN ,M ′
N

(
δN,N ′+1 + δN,N ′−1

)
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Fig. 1: (Color online) (a) energy levels of a polar molecule
in a microwave cavity as functions of the Rabi frequency at
ω/Be = 1.57. The levels are grouped in manifolds labeled
by K. The initial state for scattering calculations is shown
by the dashed line. (b) a schematic view of the microwave
field-dressed energy levels of a polar molecule. The two lowest
levels correspond to the |N = 0, N̄〉 and |N = 0, N̄−1〉 states.
The red arrow represents the molecule-field coupling. (c) The
coefficient a1 in Eq. (5). The dashed line shows the 1/∆ fit
to the ΩR = 0.05 data.

the field-dressed basis |NMN 〉|N̄ + n〉, where MN is the
projection of N̂ on the space-fixed quantization axis, and
|N̄ +n〉 are the photon number states. For the microwave
trap proposed in [12], n $ N̄ and the matrix elements
of Eq. (3) are independent of N̄ . Diagonalization of the
molecule-field Hamiltonian (2) yields

|νK〉 =
∑

N,MN

nmax∑

n=−nmax

CNMN n,νK |NMN 〉|N̄ + n〉, (4)

where the indices ν and K label the field-dressed states
and the coefficients CNMN n,νK depend on ΩR and ω.
The total wave function of the collision complex is ex-
panded in the products of field-dressed wave functions
(4) and spherical harmonics |"m"〉. The probabilities for
collision-induced transitions between the microwave field-
dressed states (4) are obtained from the solution of the
multichannel Schrödinger equation [9, 10].

Figure 1(a) shows the energy levels of CaH in a
microwave field as functions of the Rabi frequency at
ω/Be = 1.57. The field-dressed levels are arranged
in manifolds separated by multiples of the photon en-
ergy ω. We label the states by |νK〉, where ν denotes
the state of the molecule within a photon manifold,
and K labels the photon manifold. We consider colli-
sions of CaH molecules in the strong-field-seeking state
|ν = α,K = 0〉, which correlates with the ground rota-
tional state N = 0 of CaH at zero field. The states of
different K may interact when ΩR ≥ 3Be. In this work,
we consider moderate Rabi frequencies 0 < ΩR < Be

suitable for a microwave trapping experiment [12].
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Fig. 2: Cross sections for elastic scattering (squares) and in-
elastic relaxation of CaH molecules induced by collisions with
He in a microwave field with ω/Be = 1.9 (triangles), 1.1 (di-
amonds), and 0.01 (circles) as functions of the field intensity.
The elastic cross section is for the microwave field frequency
of 1.9Be. The inelastic cross sections are summed over all
energetically accessible field-dressed states except the elastic
channel. The collision energy is 0.3 cm−1.

Figure 2 shows the cross sections for elastic scattering
and inelastic relaxation in CaH–He collisions as functions
of ΩR at a collision energy of 0.3 cm−1. The probabilities
for inelastic collisions increase with decreasing the detun-
ing from resonance ∆ = 2Be − ω. For the off-resonant
microwave frequencies of 0.01 and 1.1Be, the inelastic
cross sections increase monotonically with increasing ΩR.
At a near-resonant frequency of 1.9Be, the cross sections
increase by a factor of ∼50 and show broad oscillations.
The difference between the cross sections corresponding
to different microwave frequencies becomes smaller with
increasing the field strength.

In order to elucidate the propensities for collision-
induced transitions in a microwave field, we present in
Fig. 3 the state-resolved cross sections for inelastic tran-
sitions to various final field-dressed states. As our initial
state is the ground state in the K = 0 manifold, inelastic
relaxation involves transitions between different photon
manifolds. Figure 3 shows that the total relaxation prob-
ability is determined by two major transitions: |α,K =
0〉 → |α,K ′ = −1〉 and |α,K = 0〉 → |ξ, K = −1〉.
The field-dressed states |α,K = 0〉 and |α,K ′ = −1〉
differ exactly by one quantum of microwave field energy.
Therefore, the transition |α,K = 0〉 → |α,K ′ = −1〉 may
be interpreted as a collision process accompanied by ab-
sorption of a microwave photon. The molecule-field in-
teraction (2) couples the product states with ∆N = ±1
and ∆n = ∓1, so the strongest couplings occur between
the field-dressed states in the adjacent photon manifolds
(∆K = ±1). Figure 3 shows that the transitions with the
minimal change of K are the most probable, and that the
transition probabilities decrease rapidly with increasing
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The collision-induced transitions are determined by the matrix elements of the electro-

static interaction potential in the field-dressed basis. Consider, for example, the dominant

transition |α, K = 0〉 → |α, K ′ = −1〉. In the limit of small Rabi frequency, the initial and

final field-dressed states can be expanded as (4)

|α, K = 0〉 = a0|N = 0, N̄〉+ a1|N = 1, N̄ − 1〉

|α, K = −1〉 = a0|N = 0, N̄ − 1〉+ a1|N = 1, N̄ − 2〉, (5)
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Fig. 1: (Color online) (a) energy levels of a polar molecule in a microwave cavity as functions of

the Rabi frequency at ω/Be = 1.57. The levels are grouped in manifolds labeled by K. The initial

state for scattering calculations is shown by the dashed line. (b) a schematic view of the microwave

field-dressed energy levels of a polar molecule. The two lowest levels correspond to the |N = 0, N̄〉

and |N = 0, N̄−1〉 states. The red arrow represents the molecule-field coupling. (c) The coefficient

a1 in Eq. (5). The dashed line shows the 1/∆ fit to the ΩR = 0.05 data.

Fig. 2: Cross sections for elastic scattering (squares) and inelastic relaxation of CaH molecules

induced by collisions with He in a microwave field with ω/Be = 1.9 (triangles), 1.1 (diamonds),

and 0.01 (circles) as functions of the field intensity. The elastic cross section is for the microwave

field frequency of 1.9Be. The inelastic cross sections are summed over all energetically accessible

field-dressed states except the elastic channel. The collision energy is 0.3 cm−1.

multiples of the photon energy ω. We label the states by |νK〉, where ν denotes the state

of the molecule within a photon manifold, and K labels the photon manifold. We consider

collisions of CaH molecules in the strong-field-seeking state |ν = α, K = 0〉, which correlates
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Challenges for theory of molecular !
collisions in external fields!

Large basis sets = need decoupling approximations!

Lack of accurate intermolecular potentials =!
need experimental data!

Lack of rigorous theories connecting short-range !
interaction physics and long-range dynamics!



Is there universality in molecular collisions at !
finite temperature?  !




