Efimov Physics in Li-6 Atoms

Daekyoung Kang

Eric Braaten, H.-W. Hammer, and Lucas Platter

The Ohio State University

March 8, 2010

Weakly Bound Systems

1

Outline

- Efimov effect
- Li-6 atoms
- Effective Field Theory at low energy
- Efimov physics in Li-6 atoms
 - Trimer energy spectrum
 - Scattering properties
- Summary

Weakly Bound Systems

Efimov effect in identical bosons

In 1970 Efimov predicted an infinite sequence of loosely bound 3-body states as $a o \pm \infty$

• Unitary limit $a \to \pm \infty$ $E^{(n+1)}/E^{(n)} \approx 1/22.7^2$

=> discrete scaling with scaling factor λ =22.7

• For finite *a*

discrete scaling is exact when *range-> 0*

Scattering of atoms

Log-periodic behavior in *a* Resonances differ by 22.7 Weakly Bound Systems

2 or 3-component System

- Scattering lengths (a_{ii}) in 3-body system
 - For identical bosons 3 a_{ii} are equal.
 - For 2-component system 2 a_{ii} are equal.
- Scaling factor λ depends on ratios of masses and bosonic or fermionic nature.
- Equal-mass atoms (hyperfine states)
 - λ =22.7 when 3 a_{ii} are large
 - λ =1989 when 2 a_{ii} are large (except for 2 identical fermions)
- Near Feshbach resonances, a_{ii} and ratios vary dramatically.
- Nature could provide a greater variety of Efimov features.

Weakly Bound Systems

Effective Field Theory

2-body amplitude at low energy

$$f_{ij}(k) = -\frac{1}{1/a_{ij}+ik}$$

EFT strategy for 2-body system
 construction of effective Hamiltonian that reproduces f_{ii}(k)

Interaction Hamiltonian

0

Sum over all possible 2-body diagrams

7

 $rac{g_{ij}}{m}\psi_{j}^{\dagger}\psi_{i}^{\dagger}\psi_{i}\psi_{j}$

Energy spectrum

2-body amplitude f_{ii} near a dimer binding energy (a_{ii}>0)

$$f_{ij}(E)
ightarrow rac{-2/(ma_{ij})}{E+E_{D_{ij}}}$$
 where $E_{D_{ij}} = rac{1}{ma_{ij}^2}$

3-body amplitude A_{ii} near a trimer binding energy

$$A_{ij}(E)
ightarrow rac{Z}{E + E_T^{(n)}}$$

 \Rightarrow Find energies that make the amplitudes diverge

• In unitary limit (
$$\mathbf{a}_{ii} \rightarrow \pm \infty$$
)

• trimer energy:
$$E_T^{(n)} =$$

 $E_T^{(n)} = 0.031 \,\lambda^{-2n} \,\frac{\Lambda^2}{m}$ $\Lambda \to \Lambda \, e^{i\eta^*/s_0}$

$$(\lambda = e^{\pi/s_0} = 22.7)$$

Weakly Bound Systems

Energy Spectrum in Li-6 atoms

Relaxation for A3 + D12

Summary

