

Effective Range Corrections to Few-Body Universality in an Effective Field Theory Approach

Chen Ji

Department of Physics and Astronomy Ohio University

Weakly Bounds Systems in Atomic and Nuclear Physics INT-10-46W, Seattle, March 9, 2010

in collaboration with Daniel Phillips and Lucas Platter

2 EFT analysis of three-body systems at LO

A perturbative analysis of range effects

Universality in 3-body systems

Universality exists in low-energy 3-body systems with $|a| \gg \ell$

• Efimov spectrum in the unitary limit $|a| \rightarrow \infty$:

$$E_n = (e^{-2\pi/s_0})^{n-n_*} \hbar^2 \kappa_*^2 / m$$

Efimov (1970); Braaten, Hammer (2006)

Three-body effects in cold atomic gases

Observation of three-body recombination rate in ultracold gas of ^{133}Cs atoms

Other recent observations:

- Observation of an Efimov-like trimer resonance in ultracold atom-dimer scattering Knoop *et al.*, Nature Physics
 5, 227 - 230 (2009)
- Observation of universality in ultracold 7Li three-body recombination Gross et al., Phys. Rev. Lett. 103, 163202 (2009)
- Universality in Three- and Four-Body Bound States of Ultracold Atoms Pollack et al., Science 326, 1683 (2009)
- Observation of an Efimov spectrum in an atomic system Zaccanti et al., Nature Physics 5, 586 - 591 (2009)

Effective field theory in three-body physics

- Expansion of r_0/a is applied to the study of three-body low-energy phenomena
- LO approach successfully describes three-body systems near the unitary limit $a
 ightarrow\infty$
- Effective-range corrections still need to be considered at finite scattering length

Effective range in different systems

- NN, NNN, \ldots (nucleons): $r_0/a \sim 1/3$
- ⁷Li (cold atoms): a varies, $r_0 \sim 30a_B$ (Van der Waals interaction)

A perturbative analysis to effective-range effects:

- effects from range of potential ℓ and effective range r_0 are separated
- cutoff scale: $\Lambda \sim 1/\ell$
- expansion parameter: r0
- r_0 is finite even at $\ell \sim 0$
- $\bullet\,$ we apply perturbative analysis at $\ell\sim 0~(\Lambda\rightarrow\infty)$

EFT analysis of three-boson systems at LO

Solving atom-dimer scattering amplitude at LO:

Solve LO S-wave t_0 from integral equation

$$t_0(q, p; E) = M(q, p; E) + \frac{2}{\pi} \int^{\Lambda} dq' \frac{q'^2}{-1/a + \sqrt{3q'^3/4 - mE^+}} M(q', p; E) t_0(q, q'; E)$$
$$M(q, p; E) = \frac{1}{qp} \log\left(\frac{q^2 + p^2 + qp - mE}{q^2 + p^2 - qp - mE}\right) + \frac{2H_0(\Lambda)}{\Lambda^2}$$

Skorniakov, Ter-Martirosian (1957) Bedaque, Hammer, van Kolck (1999)

LO three-body force and renormalization

The LO 3-body force H_0 represents short-distance physics

renormalization:

- adjust H_0 at fixed Λ
- reproduce one 3-body observable

$$H_0(\Lambda) = -\frac{\sin[s_0 \ln(\Lambda/\Lambda_*) - \arctan(1/s_0)]}{\sin[s_0 \ln(\Lambda/\Lambda_*) + \arctan(1/s_0)]}$$

where $\Lambda_* = 2.61 \kappa_*$.

Bedaque, Hammer, van Kolck (1999)

$$t_0(k,p) \sim rac{\sin[s_0 \ln(p/\Lambda_*)]}{p} + 8|B_{-1}| rac{\sin[s_0 \ln(p/\Lambda_*) + \arg(B_{-1})]}{ap^2}$$

Bedaque, Rupak, Griesshammer, Hammer (2003)

Three-body observables at LO

• Binding energy

$$\begin{split} t_0(q,p;E) &= \frac{\Gamma(q)\Gamma(p)}{E+B_0} + \mathcal{R}(q,p;E) \\ \Gamma(q) &= \frac{2}{\pi} \int^{\Lambda} dq' \; M(q,q';-B_0) \frac{q'^2}{-1/a + \sqrt{3q'^2/4 + mB_0}} \Gamma(q') \end{split}$$

at $a = a_*, B_0 = -1/(ma_*^2)$ at $a = a_*', B_0 = 0$ • Recombination rate

$$\alpha_{0} = \frac{512\pi^{2}}{\sqrt{3}m} \left| t_{0}(0, 2/(\sqrt{3}a); 0) \right|^{2}, \qquad \frac{dn}{dt} = -3\alpha n^{3}$$

at
$$a = a_{*0}, t_0(0, 2/(\sqrt{3}a_{*0}); 0) = 0$$

 \leftarrow recombination minimum (a > 0)

A perturbative analysis of range effects

Effective-range expansion of physical quantities

ł

$$1/a = \gamma + \frac{1}{2}r_0\gamma^2 + \cdots,$$

$$\Delta(p) = \Delta^{(0)}(p) + \Delta^{(1)}(p) + \cdots,$$

$$t(k,p) = t^{(0)}(k,p) + t^{(1)}(k,p) + \cdots,$$

$$H(\Lambda,\gamma) = H^{(0)}(\Lambda) + H^{(1)}(\gamma,\Lambda) + \cdots$$

NLO dimer propagator:

$$\Delta^{(1)}(q) = rac{r_0}{2} rac{1/a + \sqrt{-mq_0 + ec{q}^2/4 - i\epsilon}}{-1/a + \sqrt{-mq_0 + ec{q}^2/4 - i\epsilon}}$$

c.f. Hammer, Mehen (2001)

A perturbative analysis of range effects

The NLO correction to dimer propagator is inserted between LO wave functions

$$\begin{aligned} t_1(k,k;E) &= \frac{r_0}{\pi} \int^{\Lambda} dq' q'^2 \frac{1/a + \sqrt{3q'^2/4 - mE}}{-1/a + \sqrt{3q'^2/4 - mE^+}} t_0^2(k,q';E) \\ &+ \frac{2H_1(\Lambda)}{\Lambda^2} \left(1 + \frac{2}{\pi} \int^{\Lambda} dq' \frac{q'^2 t_0(k,q';E)}{-1/a + \sqrt{3q'^2/4 - mE^+}} \right)^2 \end{aligned}$$

c.f. Hammer, Mehen (2001)

NLO range corrections to 3-body observables

• NLO binding energy shift

$$\Delta B = -\frac{r_0}{\pi} \int^{\Lambda} dq \ q^2 \frac{1/a + \sqrt{3q^2/4 + mB_0}}{-1/a + \sqrt{3q^2/4 + mB_0}} \Gamma^2(q) \\ -\frac{8H_1(\Lambda)}{(\pi\Lambda)^2} \left[\int^{\Lambda} dq \ \frac{q^2}{-1/a + \sqrt{3q^2/4 + mB_0}} \Gamma(q) \right]^2$$

• NLO recombination rate

$$\alpha^{NLO} = \frac{512\pi^2}{\sqrt{3}m} \left| (1 + r_0/a) t_0(0, \frac{2}{\sqrt{3}a}; 0) + t_1(0, \frac{2}{\sqrt{3}a}; 0) \right|^2$$

Chen Ji (Ohio University)

Range Corrections to Few-Body Universality

3-body force and renormalization at NLO

Using the asymptotic behavior of t_0

The NLO 3-body force H_1 absorbs cutoff dependencies:

$$H_1(a,\Lambda) = r_0 \Lambda h_{10}(\Lambda) + \frac{r_0}{a} \ln(\Lambda/\Lambda_*) h_{11}(\Lambda)$$

where $h_{10}(\Lambda)$ and $h_{11}(\Lambda) \sim \mathcal{O}(\Lambda^0)$

NLO renormalization scheme

 $h_{10}\ fits\ the\ observable\ chosen\ at\ LO$

 h_{11} fits one extra observable

3-body force and renormalization at NLO

Using the asymptotic behavior of t_0

$$\underbrace{\begin{pmatrix} t_0 \\ \end{pmatrix}}_{(1)} \qquad \begin{pmatrix} t_0 \\ \end{pmatrix}}_{(1)} \sim r_0 \Lambda + \frac{r_0}{a} \ln(\Lambda/\Lambda_*) + \cdots$$

The NLO 3-body force H_1 absorbs cutoff dependencies:

$$H_1(a,\Lambda) = r_0 \Lambda h_{10}(\Lambda) + \frac{r_0}{a} \ln(\Lambda/\Lambda_*) h_{11}(\Lambda)$$

where $h_{10}(\Lambda)$ and $h_{11}(\Lambda) \sim \mathcal{O}(\Lambda^0)$

NLO renormalization scheme

 h_{10} fits the observable chosen at LO

 h_{11} fits one extra observable

Two observables at different scattering lengths are needed at NLO

NLO shift to 3-body spectrum

In the unitary limit: • $\Delta B^{(n)} = 0$ for all *n*, as $\Delta B^{(n_*)} = 0$

Platter, Ji, Phillips (2009)

NLO shift to positions of 3-body observables

• atom-dimer resonance at a > 0:

$$\Delta a_* = -rac{\Delta B(a_*)}{2/a_*^3 + B_0'(a_*)}$$

• three-atom recombination resonance at *a* < 0:

$$\Delta a'_* = -rac{\Delta B(a'_*)}{B'_0(a'_*)}$$

• three-atom recombination minimum at *a* > 0:

$$\Delta a_{*0} = -rac{t_1(a_{*0})}{t_0'(a_{*0})}$$

NLO corrections to universal relations

Semi-universal relations in ultra-cold ⁷Li atoms at fixed r_o:

⁷Li
$$|F = 1, m_F = 1 >$$

• $a_* = 608(11)a_B$
• $a_{*0} = 2676(67)a_B$
Pollack *et al.* (2009)

$$|F = 1, m_F = 0 >$$

•
$$a_{*0}\simeq 1160a_B$$

•
$$a'_* = -264(11)a_B$$

Gross et al. (2009)

Renormalization scheme

LO: fit to exp $a_* \Rightarrow \kappa_*$ NLO: keep κ_*, a_* ; solve a_{*0}^{NLO}

Renormalization scheme

LO: fit to exp $a_{*0} \Rightarrow \kappa_*$ NLO: keep κ_*, a_{*0} ; solve $a'_{* NLO}$

 $a_{*0}^{NLO} = 4.53a_* + 2.48r_0$

theo: (take $r_0 \sim -7a_B$)

•
$$a_{*0}^{LO} = 2754 a_B$$

•
$$a_{*0}^{NLO} = 2737 a_B$$

 $a'_{*,NLO} = -0.215a_{*0} + 1.36r_0$

theo: (take
$$r_0 \sim -20a_B$$
)

•
$$a'_{*LO} = -249a_B$$

•
$$a'_{* NLO} = -276 a_B$$

Variable effective range

a and r₀ are both functions of the magnetic field

3-body recombination in ⁷Li ($m_F = 1$)

experimental data: $a_* = 608a_B$ $a_{*0} = 2676a_B$ $a_{(n_*-1)0} = 119a_B$

Pollack et al. (2009)

3-body recombination in ⁷Li ($m_F = 0$)

experimental data: $a_{*0} = 1160a_B$ $a'_* = -264a_B$

Gross et al. (2009)

Deep dimer and finite temperature effects are not included

c.f. Braaten, Hammer, Kang, Platter (2008)

Summary

- Universality connects various 3-body systems
 A consistent study of range effects distinguish different 3-body systems (essential in nuclear physics)
- 3-body force in EFT encodes short-distance physics NLO 3BF depends on *a*, needs to fit to extra data $H_1(a, \Lambda) = r_0 \Lambda h_{10}(\Lambda) + (r_0/a) \ln(\Lambda/\Lambda_*) h_{11}(\Lambda)$
- Effective-range corrections connect thee-body parameters beyond universality The perturbative analysis relates r_0/a expansion to LO deviation from experiments

- The perturbative NLO analysis doesn't work well when r_0/a is too large
- The impact of the variable effective range model needs to be further studied
- A complete study of 3-body recombination needs to include deep dimer and finite temperature effects
- More experimental data would be useful to test EFT above LO

c.f. Bedaque, Hammer, van Kolck (1999)