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Ultracold atoms and molecules

• For atoms and molecules, ultracold usually 
means below 1 mK (and ideally below 1 μK)

• De Broglie wavelengths are large compared to 
molecular size

• Collisions mostly s-wave (incoming L=0)
• Collisions dominated by long-range forces and 

resonance phenomena
• Interactions can be controlled with applied 

fields (magnetic, electric, photon)
• Most applications depend on taking advantage of 

full quantum control



Control of collisions is through scattering length

For atomic collisions, the scattering length a passes through a 
pole at resonance, so any desired value can be “dialled up”



Resonances occur where bound states cross threshold

Atomic dimers have many bound states near threshold.
Bound states (blue) and thresholds (red) have different Zeeman 
effects: zero-energy Feshbach resonances occur where they cross

87Rb2: Marte 
et al., 2002



Overview of Cs2 levels in top 10 MHz (10-7 of well depth) 
as function of magnetic field 



Prototype problem: Cs2

• 2-body problem involving highly structured particles: 
for Cs2, 2 electron spins, 2 nuclear spins, magnetic fields.
Molecules are (much) more highly structured than atoms

• Potentials are local and real/Hermitian (no optical potentials) 
but may be many-dimensional,  e.g. for molecule-molecule interactions

• Binding energy (well depth) is typically 100 THz or more
• Wavefunction oscillates very rapidly in inner region: 

can be hundreds of bound states per channel
• We are interested in 

states bound by between  
1 kHz and 100 THz: 
10 orders of magnitude
[30 kHz = 1 μK]



How do we calculate the bound states?

• Not a 1-D problem: there are usually many internal 
degrees of freedom:
– Electron spins (on both partners) sA, sB
– Nuclear spins iA, iB (on both partners, several in a typical 

molecule)
– Molecular rotation nA, nB
– End-over-end rotation  L

• E.g. for Cs dimer basis set could be
|sAmsA> |iAmiA> |sBmsB> |iBmiB> |LML>
Total angular momentum is not conserved in an 
applied electric or magnetic field

• Schrödinger equation can typically be written as a 
large coupled-channel problem

• A similar approach is applicable whenever there is a 
basis set for all coordinates except 1, 
e.g. 3-body system in hyperspherical coordinates



Schrödinger equation can typically be written as 
a large coupled-channel problem

• Even for Cs dimer, we need over 200 channels in regions where 
states of different L interact with one another

• For atom-molecule problems, we may need tens of thousands of 
channels for convergence 
(e.g. >20,000 for Rb+OH)

• Molecule-molecule problems can be even worse



Possible approaches

• For Cs2, with careful tailoring of the grid, good results can be 
obtained with a discrete variable representation (DVR) for ψm(R), 
with around NR = 500 radial basis functions per channel

• But note that for NR radial functions and Nc channels, the time 
taken for a full diagonalization is proportional to NR

3Nc
3.

This can be reduced a little when only some eigenfunctions are 
needed, but not enormously

• A much better approach is to use propagation methods:
– Propagate the wavefunction from short range (Rmin) to a matching 

point Rmid

– Propagate the wavefunction from long range (Rmax) to Rmid

• For few-channel problems, a radial basis set can be used:



History

• 1-D version of this is Numerov-Cooley method (1961): 
wavefunction can always be renormalized to match at 
Rmid, but continuity achieved only if derivatives match 
too: search for match as function of energy.

• For coupled-channel problem, need to propagate 
wavefunction matrix Ψ(R) [not vector ψ(R)] 
because there are N linearly independent solutions

• Original version by Roy Gordon (1969):
• Propagate wavefunction matrix and its derivative
• Search for zeroes of determinant of 2N x 2N 

matching matrix (as function of energy)
• Stability problem with closed channels (need 

frequent stabilizing transforms)



Log-derivative propagators are much stabler

• Much stabler to propagate log-derivative matrix 
Y(R) = Ψ-1 dΨ/dR instead of Ψ(R) itself

• Criterion for continuity at Rmid is that there must 
exist a wavefunction vector ψ(R) such that

ψ(R) = ψin(R) = ψout(R)
and   dψin(R) /dR = dψout(R) /dR at  R = Rmid

i.e.  Yin(Rmid) ψ(Rmid)  = Yout (Rmid) ψ(Rmid)
i.e.  [ Yin (Rmid) - Yout (Rmid) ] ψ(Rmid) = 0

• Johnson’s method (1978):
Non-trivial solution exists only if determinant
| Yin(Rmid) - Yout(Rmid) | is zero:
search for zeroes of this as a function  of energy

• Works well for a few channels but is difficult to 
implement stably in the many-channel case 



Yin(Rmid) - Yout(Rmid) for 1 channel



|Yin(Rmid) = Yout(Rmid)| is an awkward function



Can we do better?

• Reconsider the criterion for continuity at Rmid: 

i.e.  [ Yin (Rmid) - Yout (Rmid) ] ψ(Rmid) = 0

Thus  ψ(Rmid) is an eigenvector of 
[ Yin (Rmid) - Yout (Rmid) ] with eigenvalue zero.

• The individual eigenvalues of

[ Yin (Rmid) - Yout (Rmid) ] 

are much better behaved functions than its 
determinant



Determinant and eigenvalues of matching matrix



A better approach

• Improved algorithm is to search for zeroes of smallest eigenvalue
ysmallest of matching determinant

• Assisted by node count algorithm (Johnson, 1978).
Generalized node count n(E) is number of eigenvalues below energy 
(of Schrödinger equation) below energy E:
increments by 1 at each energy where a solution exists.
n(E) is easily evaluated from a single propagation from Rmin to Rmax

• In practice, to locate all the eigenvalues in an energy interval:
• Use bisection with node count to identify approximate 

location
• Use secant convergence to find a zero of ysmallest(Rmid)

• Calculation of ysmallest is extremely stable: easy to get 10-12 digits, 
even if not converged with respect to step size

• Energy eigenvalues can be converged to almost any desired 
precision

• It is possible (but not quite so stable) to recover an explicit 
wavefunction ψ(R) by propagating outwards and inwards from ψ(Rmid)



Implementation and Propagators

• Algorithms implemented in BOUND package (Hutson 1983-2010)
• Log-derivative propagators (from embedding methods) are 

extremely stable even in the presence of deeply closed channels
• Use fixed-step propagators in region of deep well (innermost 1 nm)

very good step-size convergence: O(h4)
Various versions due to Johnson, Manolopoulos

• Stability is good enough to use Richardson extrapolation when 
needed to extrapolate to zero step size

• Recent development:
• For weakly bound states we need to propagate to very long 

range
• Airy-function-based propagator of Alexander can take 

extremely long steps in long-range region: 
typically only 5% of time to go out to 1 to 10 μm if needed

• Adaptive step-size algorithm  used by Airy propagator 
needed some modification for inwards propagation 
(decreasing rather than increasing step size)



Overview of Cs2 levels in top 10 MHz (10-7 of well depth) 
as function of magnetic field (Innsbruck experiments)



Cs2: focus on top 50 kHz (5 x10-9 of well depth) 

Remaining discrepancies are due to deficiencies in potentials



Molecular example: states crossing threshold in 3He + NH

Resonances expected at 7169 G and 14340 G
Bound states: red and green; thresholds: blue dots



He+NH scattering resonance 1: pole in scattering length



Molecular example: states crossing threshold in 3He + NH

Resonances expected at 7169 G and 14340 G
Bound states: red and green; thresholds: blue dots



He+NH scattering resonance 2: 
Re(a) shows small oscillation, not pole; -Im(a) shows peak



Threshold behaviour

S-wave cross sections given exactly by σel(k)=4π|a|2/(1+k2|a|2+2kβ)
σinel(k)=4πβ/[k(1+k2|a|2+2kβ)]

• Across a resonance, elastic S-matrix element S00 describes a circle in 
the complex plane:
In presence of inelastic scattering, radius of circle is proportional to 
wavenumber k with Ekin = ћ2k2/2μ

• Complex scattering length across resonance is

• Convenient to define complex k-dependent scattering length a(k), 
related to phase shift δ(k) by

“Resonant scattering length”  ares = 2γ0/Γinel may be small.



A more strongly inelastic example: He + O2

• Ground state of O2 is 3Σg
–, with 

electron spin s=1.
• Lowest rotational state for 16O2 is 

n=1, not n=0.
• Binding energy much shallower than 

for Cs2

• Complicated pattern of He-O2 levels 
crossing O2 thresholds (black)

• Note “bound” levels continued above 
lowest threshold by box 
quantisation

• Locations of Feshbach resonances 
shown by circles



Feshbach resonances in He + O2

• He + O2 collisions show strong inelasticity (M-changing collisions)
• Elastic and inelastic cross sections exhibit asymmetric lineshapes 

that may have very deep troughs 
• For He+O2 the inelasticity can be suppressed by a factor of 1000 

over a wide range of fields and temperatures near resonance
• Scattering length follows same formula but characterised by 

complex ares

PRL 103, 163201 (2009).



Conclusions

• Bound states formed from ultracold molecules offer 
important new possibilities for quantum control

• There are complicated networks of bound states with 
many interactions and avoided crossings as a function of 
applied field

• Propagation methods have major computational 
advantages over methods that use radial basis sets

• Feshbach resonances do not always produce poles in 
scattering length:
Inelastic scattering can strongly suppress resonant 
peaks in scattering lengths and cross sections

• For some systems, inelastic collisions can be strongly 
suppressed near Feshbach resonances



Who did what, and where can I find it?

• BOUND code: contact J.M.Hutson@durham.ac.uk
– Methods used in BOUND: Comp. Phys. Commun. 84, 1 (1994).
– Extension to very long-range states:

PRA 78, 052703 (2008) (with Paul Julienne and Eite Tiesinga)

• Suppression of poles in scattering resonances:
– Formal theory: New J. Phys. 9, 152 (2007)
– He + NH application, PRA 75, 022702 (2007) 

with Maykel Leonardo González-Martínez (Cuba)

• Asymmetric lineshapes and suppression of inelasticity:
– PRL 103, 163201 (2009) (with Musie Beyene and MLGM)

• Recent reviews on alkali metal dimers:
– Molecule formation in ultracold atomic gases, 

Int. Rev. Phys. Chem. 25, 497 (2006)
– Molecular collisions in ultracold atomic gases,

Int. Rev. Phys. Chem. 26, 1 (2007);
arXiv:physics/0610219
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