EFT Approaches to $\alpha\alpha$ and $N\alpha$ Systems

Renato Higa

Kernfysisch Versneller Instituut University of Groningen

INT Workshop on Weakly Bound Systems, Mar. 09, 2010

EFT Approaches to $\alpha\alpha$ and $N\alpha$ Systems

Outline

- Motivation
- EFT approach and universality
- halo/cluster EFT
 - ★ EM interactions
 - $\star~\alpha\alpha$ scattering
 - $\star~N\alpha$ scattering
- Summary and outlook

http://fy.chalmers.se/subatom/halo/halo.html

http://www.ornl.gov/info/ornlreview/v34_2_01/search.htm

- few nucleon systems: formation of halo systems
- \star ^{11}Be , ^{19}C , ^{11}Li , ^{6}He , ^{14}Be , ^{8}He , ^{8}B , ^{17}Ne , ...

$http://www.int.washington.edu/PROGRAMS/weakly_bound_wkshp/$

http://fy.chalmers.se/subatom/halo/halo.html

http://www.ornl.gov/info/ornlreview/v34_2_01/search.htm

- few nucleon systems: formation of halo systems
- \star ^{11}Be , ^{19}C , ^{11}Li , ^{6}He , ^{14}Be , ^{8}He , ^{8}B , ^{17}Ne , ...

 $p + {}^7Be \rightarrow {}^8B + \gamma$ solar neutrinos

 ${}^{9}\text{Be}(\frac{1}{2_{+}}) + \alpha \rightarrow {}^{12}\text{C} + n$ core-colapse supernovae

$$\label{eq:Be} \begin{array}{l} {}^8\mathrm{Be} + \alpha \to {}^{12}\mathrm{C} + \gamma \\ \mathrm{red \ giants} \end{array}$$

naturalness: where NDA works

strongly interacting systems: fine-tuning

"speakers should assume that nobody in the audience knows anything about the details and differences of the atom-atom / internuclear / intermolecular forces and that those should be repeatedly explained and emphasized."

"speakers should assume that nobody in the audience knows anything about the details and differences of the atom-atom / internuclear / intermolecular forces and that those should be repeatedly explained and emphasized."

at least one speaker knows nothing about the details and differences of the atom-atom / internuclear / intermolecular forces.

Effective Field Theory

"We would be also happy if you could address the advantages / limitations of the few-body method of your choice"

- symmetries
- simplicity
- able to handle non-local interactions
- W/EM interactions
- 3-4B extensions
- controlled and systematic low-energy expansion

"We would be also happy if you could address the advantages / limitations of the few-body method of your choice"

- symmetries
- simplicity
- able to handle non-local interactions
- W/EM interactions
- 3-4B extensions
- controlled and systematic low-energy expansion
- controlled and systematic low-energy expansion
- complexity for >4B (Kirscher *et al.*)

• ...

Universality in two-body systems

a is the only relevant scale at LO

$$f(\theta) = \frac{1}{-1/a - ik}, \quad E_{B,V} = \frac{1}{ma^2}, \quad \frac{d\sigma}{d\Omega} = \frac{4a^2}{1 + a^2k^2}$$
(1)

•
$$a \rightarrow \infty$$
: scale-invariant system
 \Rightarrow BS at threshold, $d\sigma/d\Omega$ saturates the UB

• RG analysis: non-trivial IR fixed point (Birse *et al.*, Phys. Lett. B 464, 169)

• close analogy to critical phenomena

(liquid-gas phase transition, ferromagnets)

Universality in three-body systems (Braaten and Hammer, Phys. Rept. 428, 259)

(Hammer and RH, Eur. J. Phys. A 37, 193)

- renormalization requires c₀ at LO ⇒ limit cycle
- $E^{(n)}/E^{(n+1)} \rightarrow \text{const.}$ (~ 515 for bosons)

halo/cluster EFT: separation of scales

- excitation of each cluster $\sqrt{m_c E_c^*} \sim M_{hi} ~(\gtrsim m_{\pi})$
- binding of the valence nucleons (clusters) $\sim M_{lo} \ll M_{hi}$
- extension of the core—treated in *perturbation theory*
- power-counting: modified to account for other effects (resonance/Coulomb)
- expansion around the resonance: rearrangement of the perturbative series, improved convergence
- Coulomb interactions

halo/cluster EFT: $k \ll m_{\pi}, \sqrt{m_c E_c^*} \sim M_{hi}$

Physical quantities: $k, 1/a_0 \sim M_{lo}, \qquad r_0 \sim M_{hi}^{-1}, \mathcal{P} \sim M_{hi}^{-3}, \dots$

$$T_{l} = -\frac{2\pi}{\mu} \frac{k^{2l}(2l+1)}{k^{2l+1}(\cot \delta_{l} - i)} P_{l}(\cos \theta)$$
$$k^{2l+1} \cot \delta_{l} \approx -\frac{1}{a_{l}} + \frac{r_{l}}{2} k^{2} + \frac{\mathcal{P}_{l}}{4} k^{4} + \cdots$$

$$\mathcal{L} = \phi^{\dagger} \left[i\partial_{0} + \frac{\vec{\nabla}^{2}}{4\mu} \right] \phi + \sigma d^{\dagger} \left[i\partial_{0} + \frac{\vec{\nabla}^{2}}{8\mu} - \Delta \right] d + g \left[d^{\dagger} \phi \phi + (\phi \phi)^{\dagger} d \right] + \cdots,$$

$$\Delta \sim M_{lo} \rightarrow i D_d^{(0)} = \frac{i\sigma}{-\Delta + i\epsilon} \sim \frac{1}{M_{lo}}$$
 (NN)

$$\Delta \sim M_{lo}^2/\mu \quad \to \quad iD_d^{(0)} = \frac{i\sigma}{q_0 - q^2/8\mu - \Delta + i\epsilon} \sim \frac{\mu}{M_{lo}^2} \tag{(\alpha\alpha)}$$

Coulomb photons dominant at very low energies

 $k_C = Z_1 Z_2 \alpha_{em} \mu$

For
$$\alpha \alpha$$
: $k_C = Z_{\alpha}^2 \alpha_{em} m_{\alpha}/2 \sim M_{hi}$

• non-perturbative Coulomb (Kong and Ravndal, NPA 665, 137)

Coulomb wave functions: $| {m k}
angle
ightarrow | \chi^{(\pm)}_k
angle$

$$T \to T_C + T_{CS}$$

$$\eta = Z^2 \alpha_{em} \mu / k = k_C / k$$

$$\sigma_l = \arg \Gamma(1 + l + i\eta), \qquad C_{\eta}^{(0) 2} = e^{-\pi \eta} \Gamma(1 + i\eta) \Gamma(1 - i\eta)$$

$$G_C^{(\pm)}(E) = \frac{1}{E - \hat{H}_0 - \hat{V}_C \pm i\epsilon} = 2\mu \int \frac{d^3q}{(2\pi)^3} \frac{|\chi_q^{(\pm)}\rangle \langle \chi_q^{(\pm)}|}{2\mu E - q^2 \pm i\epsilon}$$

$$\begin{split} T_{CS} &= \langle \chi_{k'}^{-} | \hat{V}_{S} | \chi_{k}^{+} \rangle + \langle \chi_{k'}^{-} | \hat{V}_{S} \, \boldsymbol{G}_{C}^{+} \hat{V}_{S} | \chi_{k}^{+} \rangle + \cdots \\ T_{CS}^{(0)} &= \mathbf{O} = C(E) \, \chi_{k'}^{(-) *}(0) \, \chi_{k}^{(+)}(0) = C(E) \, \boldsymbol{C}_{\eta}^{(0) \, 2} \, e^{2i\sigma_{0}} \, , \\ T_{CS}^{(1)} &= \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O} = C(E) \, \boldsymbol{C}_{\eta}^{(0) \, 2} \, e^{2i\sigma_{0}} \, \boldsymbol{C}(E) \, \boldsymbol{J}_{0}(E) \, , \\ T_{CS} &= \mathbf{O} = \mathbf{O} =$$

$\alpha \alpha$ scattering

• 0+ resonance (⁸Be g.s.):

 $E_R^{
m LAB} = 184.15 \pm 0.07 \; {
m keV}$, $\Gamma_R^{
m LAB} = 11.14 \pm 0.50 \; {
m eV}$ $M_{lo} \approx \sqrt{\mu E_R^{
m LAB}} \sim 20 \; {
m MeV}$, $M_{hi} \sim m_\pi \sim 140 \; {
m MeV}$

- power-counting: $E_{LAB} \leq 3.0 \text{ MeV}$
- scattering: Afzal *et.al.* (1969)
 - * $E_{LAB} \leq 3.0 \text{ MeV}$: data from Heydenburg and Temmer (1956)
 - \star ERE parameters from Russell *et.al.* (1956), Rasche (1967):

 $a_0 = (-1.65 \pm 0.17) \times 10^3$ fm,

 $r_0 = 1.084 \pm 0.011 \text{ fm} \sim 1/M_{hi}, \quad \mathcal{P}_0 = -1.76 \pm 0.22 \text{ fm}^3 \sim 1/M_{hi}^3$

$$\begin{split} T_{CS} &= C_{\eta}^{(0)\,2} \, \frac{C(E) \, e^{2i\sigma_0}}{1 - C(E) \, J_0(E)} = -\frac{2\pi}{\mu} \, \frac{C_{\eta}^{(0)\,2} \, e^{2i\sigma_0}}{-\frac{1}{a_0} + \frac{r_0}{2} \, k^2 - i\epsilon + \frac{2\pi}{\mu} \, J_0(E)} \\ &= -\frac{2\pi}{\mu} \, \frac{C_{\eta}^{(0)\,2} \, e^{2i\sigma_0}}{-\frac{1}{a_0^c} + \frac{r_0}{2} \, k^2 - \frac{2}{a_B} \, H(\eta)} \,, \\ a_B &= \frac{1}{Z^2 \alpha_{em} \mu} \sim \frac{1}{M_{hi}} \\ H(\eta) &= \psi(i\eta) + \frac{1}{2i\eta} - \ln(i\eta) \Rightarrow \begin{cases} \eta \leqslant 1 \, \frac{a_B}{2} \, ik \\ \eta \gg 1 \, \frac{1}{12} \, (a_B \, k)^2 + \frac{1}{120} \, (a_B \, k)^4 \end{cases}$$

- without Coulomb: conformal invariance in ⁸Be , Efimov state in ¹²C at LO (RH, Hammer, van Kolck, Nucl. Phys. A 809, 171)
- with Coulomb: ⁸Be and ${}^{12}C$ 0+ states remain close to threshold

	$a_0~(10^3~{ m fm})$	$r_0~({ m fm})$	$\mathcal{P}_0~(fm^3)$
LO	-1.80	1.083	—
NLO	-1.92 ± 0.09	1.098 ± 0.005	-1.46 ± 0.08
Rasche	-1.65 ± 0.17	1.084 ± 0.011	-1.76 ± 0.22

fine-tuning puzzle

(natural)

(fine-tuned like NN)

(fine-tuned to get E_R)

(fine-tuned to get Γ_R)

 \sim factor of 1000!!!

(Oberhummer et al., Science 289, 88; RH, Hammer, van Kolck, 2008)

plpha scattering: $S_{1/2}$, $P_{3/2}$, $P_{1/2}$

$$\begin{split} \mathcal{L}_{\mathrm{LO}} &= \phi^{\dagger} \left[i \partial_{0} + \frac{\vec{\nabla}^{2}}{2m_{\alpha}} \right] \phi + N^{\dagger} \left[i \partial_{0} + \frac{\vec{\nabla}^{2}}{2m_{N}} \right] N \\ &+ \eta_{1+} t^{\dagger} \left[i \partial_{0} + \frac{\vec{\nabla}^{2}}{2(m_{\alpha} + m_{N})} - \Delta_{1+} \right] t \\ &+ \frac{g_{1+}}{2} \left\{ t^{\dagger} \vec{S}^{\dagger} \cdot \left[N \vec{\nabla} \phi - (\vec{\nabla} N) \phi \right] + \mathrm{H.c.} - r \left[t^{\dagger} \vec{S}^{\dagger} \cdot \vec{\nabla} (N \phi) + \mathrm{H.c.} \right] \right\} \\ \mathcal{L}_{\mathrm{NLO}} &= \eta_{0+} s^{\dagger} \left[-\Delta_{0+} \right] s + g_{0+} \left[s^{\dagger} N \phi + \phi^{\dagger} N^{\dagger} s \right] + g'_{1+} t^{\dagger} \left[i \partial_{0} + \frac{\vec{\nabla}^{2}}{2(m_{\alpha} + m_{N})} \right]^{2} t \end{split}$$

(Bertulani, Hammer, van Kolck, NPA 712, 37; Bedaque, Hammer, van Kolck, PLB 569, 159)

ab-initio: Nollett em et al., PRL 99, 022502 (2007), Quaglioni & Navrátil, PRL 101, 092501 (2008)

(RH, Bertulani, van Kolck, in preparation)

c/r^2 +Coulomb: warm-up for 3α

- 3-body problem with large $a \sim 1D$ Schrödinger Eq. with $V(r) = 1/r^2$
- limit cycle for $c < -1/4 \Leftrightarrow$ Efimov spectrum (Beane *et al.*, Bawin and Coon, Braaten and Phillips, Long and van Kolck...)
- counterterm: log-periodic function of the cutoff
- Counterterm parameter Λ_* : iteration of quantum corrections (dimensional transmutation)
- model to study loss of conformal invariance (Kaplan *et al.*)

$1/r^2$ +Coulomb: warm-up for 3α

(Hammer, RH, Eur. J. Phys. A 37, 193)

S_{KVI}

Summary

- Halo nuclei, cluster systems: opportunities for EFT approach
- universality ⇔ limit cycles
- $\alpha \alpha$ scattering
 - \star Coulomb turned off \Rightarrow conformal invariance @LO, Efimov spectrum in 12 C
 - ★ incredible amount of fine-tuning
 - ★ LO (parameter-free) works well at very low energies, NLO improves description up to $E_{LAB} \approx 3$ MeV
 - * extraction of the ERE parameters with improved errorbars
- p- α scattering: good description of the $P_{3/2}$ resonance
- future: 3α , p-⁷Be, nradcap (Rupak & RH), Borromean halos, heavier nuclei, ...

selected questions

- What are the unsolved problems in the theory of scattering both in the nuclear and AMO sector?
- Does P-Wave universality exist?
- How can we decide if a nuclear halo is an Efimov state?
- How can the halo EFT approach be useful to ab-initio calcuations?
- When can we do scattering with halo EFT?

