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The nuclear landscape

• Nuclear systems are complex many-
body systems with rich properties 

• No “one size fits all” method

• All theoretical approaches need to be 
linked

Nucleonic matter: 
Infinite system of interacting neutrons 
and protons in the thermodynamic limit.

Introduction Formalism Results scale Summary

Which theoretical method(s)?

! No “one size fits all” theory for nuclei

! All theoretical approaches need to be linked

Non-Empirical Pairing Functional for nuclei T. Duguet
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Significance of nuclear and neutron matter results

• for the extremes of astrophysics: 

neutron stars, supernovae, 

neutrino interactions with nuclear matter

• microscopic constraints of nuclear energy-density functionals, 

next-generation Skyrme functionals

• universal properties at low densities         ultracold Fermi gases

• my focus: development of efficient methods to include 3N forces in 

microscopic many-body calculations of neutron and nuclear matter 

              applications to finite systems

UNEDF 

X-ray burst Crab pulsar

SN1987a

Nova
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Reminder: Chiral EFT for nuclear forces

             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

1.5

Meissner et al. , 
Machleidt

large uncertainties in coupling 
constants at present:
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Chiral 3N interaction as density-dependent two-body interaction

V
3N =

1
2

(
gA

2fπ

)2 ∑

i !=j !=k

Aijk
(σi · qi)(σj · qj)

(q2
i + m2

π)(q2
j + m2

π)

[
−4c1m2

π

f2
π

+
2c3

f2
π

qi · qj

]

π π π ππ ππ ππ ππ π= - - - + +

antisymmetrized 3N interaction (at N2LO) in neutron matter:

, and terms vanish in neutron matterc4 cD cE

V 3N

in nuclear matter all terms contribute
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f2
π

qi · qj

]

π π π ππ ππ ππ ππ π= - - - + +

antisymmetrized 3N interaction (at N2LO) in neutron matter:

, and terms vanish in neutron matterc4 cD cE

V 3N

Basic idea: Sum one particle over 
occupied states in the Fermi sea

= q, σV 3NV
3N

V
3N =

∑

q,σ

V 3Nn(kF − q)

in nuclear matter all terms contribute
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Chiral 3N interaction as density-dependent two-body interaction

V
3N =

1
2

(
gA

2fπ

)2 ∑

i !=j !=k

Aijk
(σi · qi)(σj · qj)

(q2
i + m2

π)(q2
j + m2

π)

[
−4c1m2

π

f2
π

+
2c3

f2
π

qi · qj

]

π π π ππ ππ ππ ππ π= - - - + +

antisymmetrized 3N interaction (at N2LO) in neutron matter:

, and terms vanish in neutron matterc4 cD cE

V 3N

in nuclear matter all terms contribute

V
3NV NNV = + 1/cProvides 3N corrections to free 

space NN interaction:
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general momentum dependence : 

B(k,k′) =

−1
3

{ ρ(k, k′)(k + k′)4

((k + k′)2 + m2
π)2

+ 2Bs
1(k,k′)−Bs

1(k,−k′)− (Bs
2(k,k′) + Bs

2(k
′,k))

}

+
1
3
(σ · σ′)

{2
3

ρ(k, k′)(k− k′)4

((k− k′)2 + m2
π)2

+
1
3

ρ(k, k′)(k + k′)4

((k + k′)2 + m2
π)2

+Bs
1(k,−k′)− 1

3
[Bs

2(k,k′) + Bs
2(k

′,k)]− 2
3

[Bs
2(k,−k′) + Bs

2(k
′,−k)]

}

+
2
3

[
ρ(k, k′)(k + k′)2S12(k + k′)

((k + k′)2 + m2
π)2

− ρ(k, k′)(k− k′)2S12(k− k′)
((k− k′)2 + m2

π)2

]

+
2
3
σaσ′b [

Bt
ab(k,k′)−Bt

ab(k,−k′) + Bt
ab(k

′,k)−Bt
ab(k

′,−k)
]

+
1
3
i (σa + σ′a) [Bv

a(k,k′)−Bv
a(k,−k′)]

P-dependence only weak, evaluate for P = 0 :

Operator form of         in neutron matterV
3N

V
3N = V

3N(k,k′,P)

V
3N
P=0 =

1
2

(
gA

2fπ

)2 [
−4c1m2

π

f2
π

A(k,k′) +
2c3

f2
π

B(k,k′)
]
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Bs
1(k1,k2) =

∫
d3q

(2π)3
n(q)fR(Λ3N, q, k1)fR(Λ3N, q, k2)

· ((k1 + q) · (k2 + q))2

((k1 + q)2 + m2
π)((k2 + q)2 + m2

π)

general momentum dependence : 

P-dependence only weak, evaluate for P = 0 :

Operator form of         in neutron matter

Bs
1(k,k′)

• neglect P-dependence in the following, set P=0

• in fixed-P approximation         matrix elements have the same form 
like genuine free-space NN matrix elements 

• straightforward to incorporate in existing many-body schemes

V
3N

V
3N = V

3N(k,k′,P)

V
3N

V
3N
P=0 =

1
2

(
gA

2fπ

)2 [
−4c1m2

π

f2
π

A(k,k′) +
2c3

f2
π

B(k,k′)
]
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Partial wave matrix elements 

• non-trivial density dependence

•                                        

• dominant central contributions

• non-central tensor and spin-orbit 
components

(Λ3N = 2.0 fm−1)

V3N(k, k′;1 S0) ∼ k4
F ∼ ρ4/3
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KH and A.Schwenk arXiv:0911.0483
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Low-momentum interactions from the RG

AV18

different nucleon-nucleon (NN) interactions

fit to NN scattering below        (for low momenta k < 2.1 fm-1)

Details not constrained for momenta k > 2.1 fm-1 or distances r < 0.5 fm

This is where NN models are strong and thus difficult to handle.

Many-body calculations are traditionally based on

k

k

Argonne v18

• fundamental ingredient of microscopic nuclear many-body calculations

• interaction constructed from experimental phase shifts and scattering 
lengths, interaction no physical observable!

• well constrained long-distance part, ill-defined short distance part

• hard core leads to technical problems in many-body calculations, non-
perturbative
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Low-momentum interactions from the RG

AV18

RG evolution decouples
low and high momenta

universal interaction
for low momenta Vlow k(Λ)

different nucleon-nucleon (NN) interactions

fit to NN scattering below        (for low momenta k < 2.1 fm-1)

Details not constrained for momenta k > 2.1 fm-1 or distances r < 0.5 fm

This is where NN models are strong and thus difficult to handle.

Many-body calculations are traditionally based on

k

k

Argonne v18
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VNN V3N

V3N

VNN

VNN

V3N

VNN

VNN

V3N

V3N

V3N

V3N

Equation of state (EOS):
Many-body perturbation theory

H(Λ) = T + VNN(Λ) + V3N(Λ) + . . . .

E =

+ +

+ + + + +

central quantity of interest: energy per particle E/N

• for low momentum interactions no resummation of diagrams necessary

• self-consistent single-particle propagators        thermodynamic consistency

+ . . .
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relative difference of 
3N contributions only ~3%

Neutron matter:
EOS (first order), Test of fixed-P approximation

V̄ 3NV NN+ +=E(1)
full

= + V

P-independent effective NN interaction is a very good approximation

E(1)
eff

V 3N
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KH and A.Schwenk arXiv:0911.0483
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• reduced cutoff dependence at 2nd order

• self-energy effects small 

• system is perturbative for low-momentum interactions

Neutron matter:
EOS (second order)

ENN+3N,eff
(1) ENN+3N,eff

2.0 < 3N < 2.5 fm-1
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KH and A.Schwenk arXiv:0911.0483
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Neutron matter:
EOS (second order)

1.5

• energy sensitive to      variations

• uncertainty due to coupling constants much larger than cutoff variation  
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KH and A.Schwenk arXiv:0911.0483
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Basics about neutron stars

Structure of a neutron star is determined by 
Tolman-Oppenheimer-Volkov equation:

dP

dr
= −GMε

r2

[
1 +

P

εc2

] [
1 +

4πr3P

Mc2

] [
1− 2GM

c2r

]−1

crucial ingredient: energy density ε = ε(P )
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Neutron star radius
Problem: Solution of  TOV equation requires EOS up to very high densities. 
Radius of a typical NS (M~1.6 M  ) theoretically not well constrained. 

But: Radius of NS is only relatively insensitive to high density region! 

p

ρ

1

2

ρ12ρ1

parametrize piecewise EOS:

!

Schwenk, Lattimer, Pethick, KH in prepararion
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Neutron star radius
Problem: Solution of  TOV equation requires EOS up to very high densities. 
Radius of a typical NS (M~1.6 M  ) theoretically not well constrained. 
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Schwenk, Lattimer, Pethick, KH in prepararion
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• 3N forces crucial for saturation

• cutoff dependence at 2nd order significantly reduced

• self-energy effects significant, self-consistency of approximation crucial

• saturation density and binding energy consistent with experiment for 
coupling constants fitted to

• 3rd order pp and hh contributions small 
E3H = −8.482 MeV r4He = 1.95− 1.96 fmand
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Bogner, Furnstahl, Schwenk, Nogga, KH in preparation
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Pairing gap in semi-magic nuclei 

∆(3)(N) =
(−1)N

2
[E(N + 1)− 2E(N) + E(N − 1)]

Three-body mass difference: repulsive 3N contributions 
lead to suppression
 of the pairing gap

Lesinski, Duguet, Schwenk, KH in preparation
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Conclusions and Outlook

• derivation of density dependent effective NN interactions from 3N 
interactions in the zero P-approximation

• effective NN interaction efficient to use and accounts for 3N effects in 
nucleonic matter to good approximation

• neutron matter from low-momentum interactions more perturbative than 
nuclear matter due to large 3N and tensor contributions

• saturation properties of SNM consistent with experiment

• many-body constraints to      couplings?

• generalization and application of         to finite nuclei

• microscopic constraints of non-empirical EDFs

V 3N

ci
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