Three-body forces in nucleonic matter

Kai Hebeler (TRIUMF)

INT, Seattle, March 11, 2010

A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl

Weakly-Bound Systems in Atomic and Nuclear Physics

The nuclear landscape

- Nuclear systems are complex manybody systems with rich properties
- No "one size fits all" method
- All theoretical approaches need to be linked

Image: Ab initia Configuration Interaction Desity Functional Theory

Nucleonic matter:

Infinite system of interacting neutrons and protons in the thermodynamic limit.

Significance of nuclear and neutron matter results

• for the extremes of astrophysics:

neutron stars, supernovae,

neutrino interactions with nuclear matter

• microscopic constraints of nuclear energy-density functionals, next-generation Skyrme functionals

- universal properties at low densities \rightarrow ultracold Fermi gases
- my focus: development of efficient methods to include 3N forces in microscopic many-body calculations of neutron and nuclear matter
 - applications to finite systems

Reminder: Chiral EFT for nuclear forces

Chiral 3N interaction as density-dependent two-body interaction

antisymmetrized 3N interaction (at N^2LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_j \cdot \mathbf{q}_j)}{(\mathbf{q}_i^2 + m_\pi^2)(\mathbf{q}_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

 c_4 , c_D and c_E terms vanish in neutron matter in nuclear matter all terms contribute

Chiral 3N interaction as density-dependent two-body interaction

antisymmetrized 3N interaction (at N^2LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_j \cdot \mathbf{q}_j)}{(\mathbf{q}_i^2 + m_\pi^2)(\mathbf{q}_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

 c_4 , c_D and c_E terms vanish in neutron matter

in nuclear matter all terms contribute

Basic idea: Sum one particle over occupied states in the Fermi sea

$$\overline{V}^{3N} = \sum_{\mathbf{q},\sigma} V^{3N} n(k_{\rm F} - q)$$

Chiral 3N interaction as density-dependent two-body interaction

antisymmetrized 3N interaction (at N²LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_j \cdot \mathbf{q}_j)}{(\mathbf{q}_i^2 + m_\pi^2)(\mathbf{q}_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

 c_4 , c_D and c_E terms vanish in neutron matter in nuclear matter all terms contribute

Provides 3N corrections to free space NN interaction:

$$V = V + I/c$$

Operator form of \overline{V}^{3N} in neutron matter

general momentum dependence : $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}_{P=0}^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f_\pi^2} B(\mathbf{k}, \mathbf{k}') \right]$$

$$\begin{split} B(\mathbf{k},\mathbf{k}') &= \\ &-\frac{1}{3} \Big\{ \frac{\rho(k,k')(\mathbf{k}+\mathbf{k}')^4}{((\mathbf{k}+\mathbf{k}')^2+m_\pi^2)^2} + 2B_1^s(\mathbf{k},\mathbf{k}') - B_1^s(\mathbf{k},-\mathbf{k}') - (B_2^s(\mathbf{k},\mathbf{k}')+B_2^s(\mathbf{k}',\mathbf{k})) \Big\} \\ &+ \frac{1}{3} (\boldsymbol{\sigma}\cdot\boldsymbol{\sigma}') \Big\{ \frac{2}{3} \frac{\rho(k,k')(\mathbf{k}-\mathbf{k}')^4}{((\mathbf{k}-\mathbf{k}')^2+m_\pi^2)^2} + \frac{1}{3} \frac{\rho(k,k')(\mathbf{k}+\mathbf{k}')^4}{((\mathbf{k}+\mathbf{k}')^2+m_\pi^2)^2} \\ &+ B_1^s(\mathbf{k},-\mathbf{k}') - \frac{1}{3} \left[B_2^s(\mathbf{k},\mathbf{k}') + B_2^s(\mathbf{k}',\mathbf{k}) \right] - \frac{2}{3} \left[B_2^s(\mathbf{k},-\mathbf{k}') + B_2^s(\mathbf{k}',-\mathbf{k}) \right] \Big\} \\ &+ \frac{2}{3} \left[\frac{\rho(k,k')(\mathbf{k}+\mathbf{k}')^2S_{12}(\mathbf{k}+\mathbf{k}')}{((\mathbf{k}+\mathbf{k}')^2+m_\pi^2)^2} - \frac{\rho(k,k')(\mathbf{k}-\mathbf{k}')^2S_{12}(\mathbf{k}-\mathbf{k}')}{((\mathbf{k}-\mathbf{k}')^2+m_\pi^2)^2} \right] \\ &+ \frac{2}{3} \sigma^a \sigma'^b \left[B_{ab}^t(\mathbf{k},\mathbf{k}') - B_{ab}^t(\mathbf{k},-\mathbf{k}') + B_{ab}^t(\mathbf{k}',\mathbf{k}) - B_{ab}^t(\mathbf{k}',-\mathbf{k}) \right] \\ &+ \frac{1}{3} i \left(\sigma^a + \sigma'^a \right) \left[B_a^v(\mathbf{k},\mathbf{k}') - B_a^v(\mathbf{k},-\mathbf{k}') \right] \end{split}$$

Operator form of \overline{V}^{3N} in neutron matter

general momentum dependence : $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}_{P=0}^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f_\pi^2} B(\mathbf{k}, \mathbf{k}') \right]$$

 $B_1^s(\mathbf{k},\mathbf{k}')$

$$\begin{aligned}
B_1^s(\mathbf{k}_1, \mathbf{k}_2) &= \int \frac{d^3 \mathbf{q}}{(2\pi)^3} n(q) f_R(\Lambda_{3N}, q, k_1) f_R(\Lambda_{3N}, q, k_2) \\
&\cdot \frac{((\mathbf{k}_1 + \mathbf{q}) \cdot (\mathbf{k}_2 + \mathbf{q}))^2}{((\mathbf{k}_1 + \mathbf{q})^2 + m_\pi^2)((\mathbf{k}_2 + \mathbf{q})^2 + m_\pi^2)}
\end{aligned}$$

- neglect P-dependence in the following, set P=0
- in fixed-P approximation \overline{V}^{3N} matrix elements have the same form like genuine free-space NN matrix elements
- straightforward to incorporate in existing many-body schemes

Partial wave matrix elements $(\Lambda_{3N} = 2.0 \, \text{fm}^{-1})$

- non-trivial density dependence
- $\overline{V}_{3N}(k, k'; {}^{1}S_{0}) \sim k_{F}^{4} \sim \rho^{4/3}$
- dominant central contributions
- non-central tensor and spin-orbit components

KH and A.Schwenk arXiv:0911.0483

Low-momentum interactions from the RG

- fundamental ingredient of microscopic nuclear many-body calculations
- interaction constructed from experimental phase shifts and scattering lengths, interaction no physical observable!
- well constrained long-distance part, ill-defined short distance part
- hard core leads to technical problems in many-body calculations, nonperturbative

Low-momentum interactions from the RG

Friday, March 12, 2010

Equation of state (EOS): Many-body perturbation theory

central quantity of interest: energy per particle $\,E/N\,$

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

- for low momentum interactions no resummation of diagrams necessary
- self-consistent single-particle propagators → thermodynamic consistency

Neutron matter: EOS (first order), Test of fixed-P approximation

$$E_{eff}^{(1)} = \bigcirc + \bigvee V$$

relative difference of 3N contributions only ~3%

KH and A.Schwenk arXiv:0911.0483

P-independent effective NN interaction is a very good approximation

Neutron matter: EOS (second order)

KH and A.Schwenk arXiv:0911.0483

- reduced cutoff dependence at 2nd order
- self-energy effects small
- system is perturbative for low-momentum interactions

Neutron matter: EOS (second order)

- energy sensitive to C_3 variations
- uncertainty due to coupling constants much larger than cutoff variation

Basics about neutron stars

 Rotation axis
 Beam of radiation

 Hot spots
 Neutron star

 Neutron star
 Magnetic axis

 Beam of radiation
 Magnetic field lines

Structure of a neutron star is determined by Tolman-Oppenheimer-Volkov equation:

$$\frac{dP}{dr} = -\frac{GM\epsilon}{r^2} \left[1 + \frac{P}{\epsilon c^2}\right] \left[1 + \frac{4\pi r^3 P}{Mc^2}\right] \left[1 - \frac{2GM}{c^2 r}\right]^{-1}$$

crucial ingredient: energy density $\,\epsilon=\epsilon(P)\,$

Neutron star radius

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~1.6 M $_{\odot}$) theoretically not well constrained.

But: Radius of NS is only relatively insensitive to high density region!

parametrize piecewise EOS:

Neutron star radius

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~1.6 M $_{\odot}$) theoretically not well constrained.

But: Radius of NS is only relatively insensitive to high density region!

Symmetric nuclear matter

- 3N forces crucial for saturation
- cutoff dependence at 2nd order significantly reduced
- self-energy effects significant, self-consistency of approximation crucial
- saturation density and binding energy consistent with experiment for coupling constants fitted to $E_{^{3}\text{H}} = -8.482 \text{ MeV}$ and $r_{^{4}\text{He}} = 1.95 1.96 \text{ fm}$
- 3rd order pp and hh contributions small

Pairing gap in semi-magic nuclei

Conclusions and Outlook

- derivation of density dependent effective NN interactions from 3N interactions in the zero P-approximation
- effective NN interaction efficient to use and accounts for 3N effects in nucleonic matter to good approximation
- neutron matter from low-momentum interactions more perturbative than nuclear matter due to large 3N and tensor contributions
- saturation properties of SNM consistent with experiment
- many-body constraints to C_i couplings?
- generalization and application of $\overline{V}_{3\mathrm{N}}$ to finite nuclei
- microscopic constraints of non-empirical EDFs