Role of the continuum in Coupled-Cluster theory

Gaute Hagen¹ Collaborators : T. Papenbrock, D. Dean, M. Hjorth-Jensen, S. Bacca and A. Schwenk

¹Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

Weakly-Bound Systems in Atomic and Nuclear Physics INT, March 10, 2010

Outline

- 1 The driplines the limit of nuclear existence
- 2 Coupled Cluster approach to nuclear structure
 - Single-Reference Coupled-Cluster theory
 - Coupled-Cluster approach to open quantum systems and Helium isotopes
- Equation-of-Motion Coupled-Cluster approach to open-shell nuclei
 - Equation-of-Motion Coupled-Cluster theory
 - $\bullet\,$ Microscopic description of resonances and halo states in $^{17}{\rm F}\,$ and $^{17}{\rm O}\,$
 - Low-lying states in ¹⁷O and the Center of Mass
 - Shell evolution in the oxygen and fluorine isotopes
- 4 Conclusion and Perspectives

Motivation

Ab-initio Coupled-Cluster approach Open-shell nuclei and CCM Conclusion and Perspectives

Peculiarities at the nuclear driplines

Motivation

Ab-initio Coupled-Cluster approach Open-shell nuclei and CCM Conclusion and Perspectives

Peculiarities at the nuclear driplines

Motivation

Ab-initio Coupled-Cluster approach Open-shell nuclei and CCM Conclusion and Perspectives

N-N force from Chiral perturbation theory

Low-momentum nucleon-nucleon interaction: V_{low-k}

A-body nuclear Hamiltonian

$$H^{A} = T - T_{CM} + V_{2}(\Lambda) + V_{3}(\Lambda) + \cdots + V_{A}(\Lambda) \approx T - T_{CM} + V_{2}(\Lambda) + V_{3}(\Lambda)??$$

SR Coupled-Cluster theory Coupled-Cluster theory for open quantum systems

Single-Reference Coupled Cluster Theory

Exponential Ansatz for
$$\Psi$$

 $|\Psi\rangle = e^{\hat{T}}|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A$
 $\hat{T}_1 = \sum_{i,a} t_i^a \hat{a}_a^{\dagger} \hat{a}_i, \quad \hat{T}_2 = \frac{1}{2} \sum_{i < j, a < b} t_{ij}^{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_j \hat{a}_i.$

Coupled Cluster Equations $\Delta E = \langle \Phi_0 | (H_N exp(T))_C | \Phi_0 \rangle$ $0 = \langle \Phi_p | (H_N exp(T))_C | \Phi_0 \rangle$ $\bar{H} = (H_N exp(T))_C$

- Coupled Cluster Theory is fully microscopic .
- Ocupled Cluster is size extensive. No unlinked diagrams enters, and error scales linearly with number of particles.
- 3 Low computational cost (CCSD scales as $n_o^2 n_u^4$).
- Gapable of systematic improvements.
- Amenable to parallel computing.

SR Coupled-Cluster theory Coupled-Cluster theory for open quantum systems

Coupled Cluster in pictures

$$\begin{split} \left| \Psi \right\rangle &= e^{T^{(A)}} \left| \Phi \right\rangle, \quad T^{(A)} = \sum_{k=1}^{m^{a}} T_{k} \\ T_{1} &= \sum_{i} t_{i}^{a} \left| \Phi_{i}^{a} \right\rangle, \quad T_{2} = \sum_{i>j \atop a>b} t_{ij}^{ab} \left| \Phi_{ij}^{ab} \right\rangle, \quad T_{3} = \sum_{i>j>k \atop a>b>c} t_{ijk}^{abc} \left| \Phi_{ijk}^{abc} \right\rangle \end{split}$$

SR Coupled-Cluster theory Coupled-Cluster theory for open quantum systems

How well does SR-CC describe open-shell nuclei?

Various Coupled Cluster approaches to the ^{3–6}He ground states.Single reference Coupled-Cluster methods works.

Method	³ He	⁴ He	⁵ He	⁶ He	$\langle J^2 angle$, ⁶ He
CCSD	-6.21	-26.19	-21.53	-20.96	0.61
CCSD(T)	-6.40	-26.27	-21.88	-22.60	0.65
CCSDT-1	-6.41	-28.27	-21.89	-22.85	0.29
CCSDT-2	-6.41	-28.26	-21.89	-22.78	0.25
CCSDT-3	-6.42	-26.27	-21.92	-22.90	0.26
CCSDT	-6.45	-26.28	-22.01	-22.52	0.04
FCI	-6.45	-26.3	-22.1	-22.7	0.00

SR Coupled-Cluster theory Coupled-Cluster theory for open quantum systems

Coupled-cluster approach to open quantum systems

SR Coupled-Cluster theory Coupled-Cluster theory for open quantum systems

CCSD results for Helium chain using V_{low-k}

- $V_{\text{low}-k}$ from N3LO with $\Lambda = 1.9 \text{fm}^{-1}$.
- G. Hagen et al., Phys. Lett. B 656, 169 (2007). arXiv:nucl-th/0610072.
- First *ab-initio* calculation of decay widths of a whole isotopic chain.
- CCM unique method for dripline nuclei.
- ~ 1000 active orbitals
- Underbinding hints at missing 3NF

SR Coupled-Cluster theory Coupled-Cluster theory for open quantum systems

Helium isotopes with V_{low-k}

S. Bacca, A. Schwenk, G. Hagen, T. Papenbrock, Eur. Phys. J. A 42, 553 (2009).

INT workshop 2010

Coupled-Cluster approach to nuclear structure

⁴He and ⁸He density distributions with V-srg

- Single-particle density in ⁴He and ⁸He.
- Gamow-Hartree-Fock basis has correct asymptotics.
- N³LO evolved down to $\lambda = 2.0 {\rm fm}^{-1}$ from similarity renormalization group theory.

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Most nuclei are open-shell. How to access these nuclei with coupled-cluster method?

z				19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27Mg	28Mg	29Mg	30Mg	31Mg	32Mg
				18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na	30Na	31Na
10			16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne	29Ne	BONe
		14F	15F	16F	17F	18F	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F
8	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280
	11N	12N	13N	14N	15N	16N	17N	18N	19N	20N	21N	22N	23N	24N	25N		
6	10C	110	12C	13C	14C	15C	16C	17C	18C	19C	200	21C	22C				
	9B	10B	11B	12B	13B	14B	15B	16B	178	18B	19B						
4	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be								
	4		6		8		10		12		14		16		18		N

INT workshop 2010

Coupled-Cluster approach to nuclear structure

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Single-reference or Multi-reference Coupled-Cluster theory?

Single-Reference CC

- Single-Reference Coupled-Cluster (SR CC) theory can in principle be applied to open-shell nuclei.
- SR CC can not define a unique reference function.
- SR CC breaks rotational invariance for truly open shell systems like ⁶He.
- SR CC requires uncoupled basis (m-scheme), must use soft interactions due to explosion of basis states.

Equation-of-Motion (Multi-Reference) CC:

- Equation-of-Motion provides us with a consistent approach to open-shell nuclei.
- Equation-of-Motion can be implemented in a spherical scheme, can apply basis sets large enough to accomodate "bare" interactions

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Equation-of-Motion CC for open-shell nuclei

Equation-of-Motion Coupled-Cluster theory

The idea of Equation-of-Motion Coupled-Cluster theory is to calculate ground- and excited states of system B by acting with a excitation operator Ω_k on the ground state of system A

$$|\psi_{k}^{B}
angle=\Omega_{k}|\psi_{0}^{A}
angle,~~|\psi_{0}^{A}
angle=\exp(\mathcal{T})|\phi_{0}^{A}
angle$$

Define the non-particle conserving excitation operators $\Omega_k = R_k^{(A \pm 1)}$

$$\begin{aligned} R_k^{(A+1)} &= r^a a_a^{\dagger} + \frac{1}{2} r_j^{ab} a_a^{\dagger} a_b^{\dagger} a_j + \dots, \\ R_k^{(A-1)} &= r_i a_i + \frac{1}{2} r_{ij}^{b} a_b^{\dagger} a_i a_j + \dots, \end{aligned}$$

Particle-Attached/Removed EOM-CC equations

$$\left[\overline{H}, R_{k}^{(A\pm1)}\right] |\phi_{0}\rangle = \left(\overline{H} R_{k}^{(A\pm1)}\right)_{C} |\phi_{0}\rangle = \omega_{k} R_{k}^{(A\pm1)} |\phi_{0}\rangle,$$

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Low-lying states in ¹⁷F and the role of continuum

- Low-lying single-particle states in ¹⁷F using a Gamow-Hartree-Fock basis (GHF) and a Oscillator-Hartree-Fock (OHF) basis.
- $\bullet\,$ Very weak dependence on the oscillator frequency $\hbar\omega$ for calculations done in a GHF basis.
- Significant effect of continuum coupling on the $1/2^+$ and $3/2^+$ states in ^{17}F .

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Cutoff dependence on Low-lying states in ¹⁷F

- Cuttoff dependence on the low-lying states in ¹⁷F.
- Spin-orbit splitting increases between the d_{5/2}-d_{3/2} orbitals with decreasing cutoff λ.
- s_{1/2} state show very weak dependence on the cutoff.
- The 1/2⁺ state is a *halo* state which extends far beyond the range of the interaction. Renormalizing the interaction by integrating out high momentum modes does not alter the long range physics.

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Low-lying states in ¹⁷O and ¹⁷F

 Low-lying states in ¹⁷F and ¹⁷O using a Gamow-Hartree-Fock basis and a Oscillator-Hartree-Fock basis.

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Summary of results for ¹⁷O and ¹⁷F

- Our calculations for the 1/2⁺ states in ¹⁷F and ¹⁷O agree remarkably well with experiment.
- Spin-orbit splitting between $d_{5/2}$ - $d_{3/2}$ orbitals too compressed without three-nucleon forces.
- Our calculations of the widhts of the 3/2⁺ resonant states compare reasonably well with experiment.

		¹⁷ 0	¹⁷ F				
	$(1/2)_1^+$	$(5/2)_1^+$	Es.o.	$(1/2)_1^+$	$(5/2)_1^+$	Es.o.	
OHF	-1.888	-2.955	4.891	0.976	0.393	4.453	
GHF	-2.811	-3.226	4.286	-0.082	0.112	3.747	
Exp.	-3.272	-4.143	5.084	-0.105	-0.600	5.000	

	¹⁷ 0 (3	$(2)_{1}^{+}$	¹⁷ F (3/2) ₁ ⁺		
	Re[E _{sp}]	Г	$Re[E_{sp}]$	Г	
PA-EOMCCSD	1.059	0.014	3.859	0.971	
Experiment	0.942	0.096	4.399	1.530	

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Low-lying states in ¹⁷O with $V_{\rm srg}$ (2.8/fm) and the center of mass

- Low-lying 1/2⁺, 3/2⁺ and 5/2⁺ states in ¹⁷O calculated using PA-EOM-CCSD in 13 major oscillator shells.
- The expectation value of $H_{cm}(\omega) = T_{cm} + \frac{1}{2}mA\omega^2 R_{cm}^2 \frac{3}{2}\hbar\omega$ meassures to what degree the CoM is a Gaussian with oscillator frequency ω .

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Coupled-Cluster wave function factorizes: $\psi_{int}\psi_{cm}$

- Assumption: CoM wave function is always a gaussian (approximately).
- Take expectation value of the generalized CoM Hamiltonian $H_{cm}(\tilde{\omega}) = T_{cm} + \frac{1}{2}mA\tilde{\omega}^2 R_{cm}^2 \frac{3}{2}\hbar\tilde{\omega}.$
- CC wave function factorizes and the CoM wave function is a Gaussian with almost constant width $\hbar\tilde{\omega} \sim 16 MeV$ for all different $\hbar\omega$ values of the basis.

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Shell evolution towards the drip line

FIG. 4 (color online). The experimental [25,26] (data points) and theoretical [13–15] (lines) one- and two-neutron separation energies for the N = 15–18 oxygen isotopes. The experimental error is shown if it is larger than the symbol size.

25O neutron separation energy: -820 keV the width was measured to be 90(30) keV giving a lifetime of t \sim 7x10-21 sec

C. Hoffman PRL 100 (2008) 152502

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Shell evolution in oxygen and fluor

- Low lying states in oxygen and fluorine isotopes calculated using PA/PR-EOMCCSD with "bare" chiral interactions.
- Model space consists of 15 major harmonic oscillator shells with fixed oscillator frequency $\hbar \omega = 32$ MeV.
- ²⁵O is stable with respect to neutron emission. Interesting inversion of ground state in ²⁵F.
- What is the role of continuum and three-body forces ?

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Cutoff dependence in ²⁴O and ²⁵F

- Variation of the cutoff as a tool to probe the effects of missing many-body forces.
- No unique cutoff that will reproduce data in ^{24}O and ^{25}F simultaneously.
- Three-nucleon forces are needed. Continuum coupling might bring additional binding in the low-lying states in ²⁵F.

PA-EOMCC Low-lying states in ¹⁷F and ¹⁷O PA-EOM and Center of Mass Shell-evolution in oxygen and fluor

Cutoff dependence in ²⁵O

- Cuttoff dependence on the $3/2^+$ state in ${}^{25}O$.
- Calculations done in 15 major oscillator shells with fixed oscillator frequency $\hbar\omega=32 {\rm MeV}.$
- There are no two-body forces within the family of phase-equivalent low-momentum interactions derived from N³LO that will make ²⁵O unstable.
- Three-nucleon forces are needed to match theory with experiment in ²⁵O!

Conclusion

- Coupled-Cluster theory has been successfully applied to weakly bound and unbound helium isotopes.
- Derived and implemented Equation of Motion CCM; calculation of open-shell systems, excited states, density distributions and radii.
- PA-EOM Coupled-cluster method has been succesfully applied to the description of weakly bound and unbound states in ¹⁷O and ¹⁷F.
- Coupling to the continuum plays a significant role on states close to the particle emission threshold.
- PR/PA-EOM Coupled-Cluster theory allows for *ab initio* calculations of single-particle states and the study of shell-evolution in neutron rich nuclei.
- Provide realistic single-particle energies for shell-model calculations with a core.

Future perspectives

- Revisit Helium chain with 3NF. Spin-orbit splitting in He7 and He9.
- Matter and charge radii of ¹¹Li.
- Excited states and matter densities for dripline nuclei.
- Coupled Cluster approach to nuclear matter.
- Construction of effective interaction for shell-model calculations.
- Coupled-Cluster approach to nuclear reactions; CC-LIT and construction of optical potentials from folding procedures.
- Ab-initio description of ⁵⁶Ni, ¹⁰⁰Sn and ²⁰⁸Pb within reach.

Coupled Cluster for open quantum systems

Open Quantum System. Coupling with continuum taken into account. Closed Quantum System. No coupling with external continuum.

Berggren Single-particle basis

Complex energies requires a generalized completeness relation

$$\begin{split} |\Psi(\mathbf{r},t)|^2 &= |\Phi(\mathbf{r})|^2 \exp(-\frac{\Gamma}{\hbar}t), \ E = E_r - i\Gamma/2.\\ \mathbf{1} &= \sum_{n=b,d} |\psi_l(k_n)\rangle \langle \tilde{\psi}_l(k_n)| + \int_{L^+} dk \ k^2 |\psi_l(k)\rangle \langle \tilde{\psi}_l(k)|. \end{split}$$

Partial wave decomposition of ⁸He density

- N³LO evolved down to $\lambda = 2.0 {\rm fm}^{-1}$ from similarity renormalization group theory.
- Neutron skin in ⁸He is mainly built from s- and p-partial waves.
 Protons are mainly occupying s- partial waves.

Matter and charge radii of ⁸He using V-srg

- Λ dependence on ⁸He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

Properties of weakly bound nuclei

Convergence of ⁴He and ⁸He ground state energies with increasing number of partial waves in the basis.

Matter and charge radii of ⁴He using V-srg

- Λ dependence on ⁴He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

Properties of weakly bound nuclei

$\hbar\omega$ dependence on ${}^{4}\text{He}$ and ${}^{8}\text{He}$ charge and matter radii.

The role of continuum in calculations of oxygen isotopes

- Shell model calculations of oxygen isotopes using two-body effective interactions and second order perturbation theory.
- Calculations starting from a ¹⁶O core gives ²⁵O bound.
- Starting from a ²²O core gives ²⁵O unbound in both HO and Gamow basis.
- Inclusion of many-body effects crucial, continuum plays a role in the description of excited states.
- K. Tsukiyama, M. Hjorth-Jensen, G. Hagen, Phys. Rev. C(R) 80, 051301 (2009)

^{4–8}He with smooth v-lowk

Convergence of CCSD results

INT workshop 2010

Coupled-Cluster approach to nuclear structure

Convergence of CCSD energy with $2n + l \le 10$ truncation.

- ⁵He ground state energy starting with oscillator bases given for different $\hbar\omega$ values.
- Weak $\hbar\omega$ dependence, Results are well converged. $\Delta Re[E] \sim 0.1 \text{MeV}, \ \Delta Im[E] \sim 0.01 \text{MeV}$

INT workshop 2010

Coupled-Cluster approach to nuclear structure

Convergence of CCSD energy.

CCSD convergence of ⁵He ground state energy for the s - d space (300 orbitals) using n = 20 discretization points for L^+ . The calculation where performed using two very different L^+ contours

