Role of the continuum in Coupled-Cluster theory

Gaute H agen $¹$ </sup> Collaborators : T. Papenbrock, D. Dean, M. Hjorth-Jensen, S. Bacca and A. Schwenk

¹Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

Weakly-Bound Systems in Atomic and Nuclear Physics INT, March 10, 2010

Outline

- 1 [The driplines the limit of nuclear existence](#page-2-0)
- 2 [Coupled Cluster approach to nuclear structure](#page-6-0)
	- [Single-Reference Coupled-Cluster theory](#page-6-0)
	- [Coupled-Cluster approach to open quantum systems and](#page-9-0) [Helium isotopes](#page-9-0)
- 3 [Equation-of-Motion Coupled-Cluster approach to open-shell](#page-13-0) [nuclei](#page-13-0)
	- [Equation-of-Motion Coupled-Cluster theory](#page-13-0)
	- [Microscopic description of resonances and halo states in](#page-16-0) 17 F [and](#page-16-0) 17_O
	- Low-lying states in ^{17}O and the Center of Mass
	- [Shell evolution in the oxygen and fluorine isotopes](#page-22-0)
- 4 [Conclusion and Perspectives](#page-26-0)

[Motivation](#page-2-0)

[Ab-initio Coupled-Cluster approach](#page-6-0) [Open-shell nuclei and CCM](#page-13-0) [Conclusion and Perspectives](#page-26-0)

Peculiarities at the nuclear driplines

[Motivation](#page-2-0)

[Ab-initio Coupled-Cluster approach](#page-6-0) [Open-shell nuclei and CCM](#page-13-0) [Conclusion and Perspectives](#page-26-0)

Peculiarities at the nuclear driplines

[Motivation](#page-2-0)

[Ab-initio Coupled-Cluster approach](#page-6-0) [Open-shell nuclei and CCM](#page-13-0) [Conclusion and Perspectives](#page-26-0)

N-N force from Chiral perturbation theory

Low-momentum nucleon-nucleon interaction: $V_{\text{low}-k}$

A-body nuclear Hamiltonian

$$
H^{A} = T - T_{CM} + V_{2}(\Lambda) + V_{3}(\Lambda) + \cdots V_{A}(\Lambda) \approx T - T_{CM} + V_{2}(\Lambda) + V_{3}(\Lambda)?
$$

[SR Coupled-Cluster theory](#page-6-0) [Coupled-Cluster theory for open quantum systems](#page-9-0)

Single-Reference Coupled Cluster Theory

Exponential Ansatz for
$$
\Psi
$$

\n
$$
|\Psi\rangle = e^{\hat{\mathcal{T}}}|\Phi_0\rangle, \quad \hat{\mathcal{T}} = \hat{\mathcal{T}}_1 + \hat{\mathcal{T}}_2 + \ldots + \hat{\mathcal{T}}_A
$$
\n
$$
\hat{\mathcal{T}}_1 = \sum_{i,a} t_i^a \hat{a}_a^{\dagger} \hat{a}_i, \quad \hat{\mathcal{T}}_2 = \frac{1}{2} \sum_{i < j, a < b} t_{ij}^{ab} \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_j \hat{a}_i.
$$

Coupled Cluster Equations $\Delta E = \langle \Phi_0 | (H_N exp(T))_C | \Phi_0 \rangle$ $0 = \langle \Phi_p | (H_N exp(T))_C | \Phi_0 \rangle$ $\bar{H} = (H_N exp(T))_C$

- **1** Coupled Cluster Theory is fully microscopic.
- 2 Coupled Cluster is size extensive. No unlinked diagrams enters, and error scales linearly with number of particles.
- **3** Low computational cost (CCSD scales as $n_o^2 n_u^4$).
- **4** Capable of systematic improvements.
- **6** Amenable to parallel computing.

[SR Coupled-Cluster theory](#page-6-0) [Coupled-Cluster theory for open quantum systems](#page-9-0)

Coupled Cluster in pictures

$$
|\Psi\rangle = e^{T^{(A)}} |\Phi\rangle, \quad T^{(A)} = \sum_{k=1}^{m} T_k
$$

$$
T_1 = \sum_i t_i^a |\Phi_i^a\rangle, \quad T_2 = \sum_{\substack{i>j \ p \ j}} t_{ij}^{ab} |\Phi_{ij}^{ab}\rangle, \quad T_3 = \sum_{\substack{i>j \ p \ k}} t_{ijk}^{abc} |\Phi_{ijk}^{abc}\rangle
$$

m

[SR Coupled-Cluster theory](#page-6-0) [Coupled-Cluster theory for open quantum systems](#page-9-0)

How well does SR-CC describe open-shell nuclei?

Various Coupled Cluster approaches to the $3-6$ He ground states.Single reference Coupled-Cluster methods works.

[SR Coupled-Cluster theory](#page-6-0) [Coupled-Cluster theory for open quantum systems](#page-9-0)

Coupled-cluster approach to open quantum systems

[SR Coupled-Cluster theory](#page-6-0) [Coupled-Cluster theory for open quantum systems](#page-9-0)

CCSD results for Helium chain using $V_{\text{low}-k}$

- $V_{\text{low}-k}$ from N3LO with $\Lambda = 1.9$ fm⁻¹.
- G. Hagen et al., Phys. Lett. B 656, 169 (2007). arXiv:nucl-th/0610072.
- **•** First ab-initio calculation of decay widths of a whole isotopic chain.
- CCM unique method for dripline nuclei.
- ∼ 1000 active orbitals
- Underbinding hints at missing 3NF

[SR Coupled-Cluster theory](#page-6-0) [Coupled-Cluster theory for open quantum systems](#page-9-0)

Helium isotopes with V_{low-k}

S. Bacca, A. Schwenk, G. Hagen, T. Papenbrock, Eur. Phys. J. A 42, 553 (2009).

INT workshop 2010 [Coupled-Cluster approach to nuclear structure](#page-0-0)

4 He and 8 He density distributions with V-srg

- Single-particle density in 4 He and 8 He.
- **•** Gamow-Hartree-Fock basis has correct asymptotics.
- N³LO evolved down to $\lambda = 2.0$ fm⁻¹ from similarity renormalization group theory.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Most nuclei are open-shell. How to access these nuclei with coupled-cluster method?

INT workshop 2010 [Coupled-Cluster approach to nuclear structure](#page-0-0)

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Single-reference or Multi-reference Coupled-Cluster theory?

Single-Reference CC

- **Single-Reference Coupled-Cluster (SR CC) theory can in principle be applied to** open-shell nuclei.
- **•** SR CC can not define a unique reference function.
- \bullet SR CC breaks rotational invariance for truly open shell systems like 6 He.
- **SR CC requires uncoupled basis (m-scheme), must use soft interactions due to** explosion of basis states.

Equation-of-Motion (Multi-Reference) CC:

- Equation-of-Motion provides us with a consistent approach to open-shell nuclei.
- Equation-of-Motion can be implemented in a spherical scheme, can apply basis sets large enough to accomodate "bare" interactions

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Equation-of-Motion CC for open-shell nuclei

Equation-of-Motion Coupled-Cluster theory

The idea of Equation-of-Motion Coupled-Cluster theory is to calculate ground- and excited states of system B by acting with a excitation operator Ω_k on the ground state of system A

$$
|\psi_k^B\rangle = \Omega_k |\psi_0^A\rangle, \ |\psi_0^A\rangle = \exp(\mathcal{T}) |\phi_0^A\rangle
$$

Define the non-particle conserving excitation operators $\Omega_k = R_k^{(A\pm 1)}$

$$
R_k^{(A+1)} = r^a a^{\dagger}_a + \frac{1}{2} r_j^{ab} a^{\dagger}_a a^{\dagger}_b a_j + \dots,
$$

$$
R_k^{(A-1)} = r_i a_i + \frac{1}{2} r_{ij}^b a^{\dagger}_b a_i a_j + \dots,
$$

Particle-Attached/Removed EOM-CC equations

$$
\left[\overline{H},R_k^{(A\pm 1)}\right]|\phi_0\rangle=\left(\overline{H}R_k^{(A\pm 1)}\right)_C|\phi_0\rangle=\omega_kR_k^{(A\pm 1)}|\phi_0\rangle,
$$

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Low-lying states in ^{17}F and the role of continuum

- \bullet Low-lying single-particle states in ^{17}F using a Gamow-Hartree-Fock basis (GHF) and a Oscillator-Hartree-Fock (OHF) basis.
- \bullet Very weak dependence on the oscillator frequency $\hbar\omega$ for calculations done in a GHF basis.
- Significant effect of continuum coupling on the $1/2^+$ and $3/2^+$ states in 17 F.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Cutoff dependence on Low-lying states in ¹⁷F

- **O** Cuttoff dependence on the low-lying states in 17 F.
- Spin-orbit splitting increases between the $d_{5/2}$ - $d_{3/2}$ orbitals with decreasing cutoff λ.
- $s_{1/2}$ state show very weak dependence on the cutoff.
- The $1/2^+$ state is a *halo* state which extends far beyond the range of the interaction. Renormalizing the interaction by integrating out high momentum modes does not alter the long range physics.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Low-lying states in ${}^{17}O$ and ${}^{17}F$

 \bullet Low-lying states in ¹⁷F and ¹⁷O using a Gamow-Hartree-Fock basis and a Oscillator-Hartree-Fock basis.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Summary of results for ${}^{17}O$ and ${}^{17}F$

- Our calculations for the $1/2^+$ states in ¹⁷F and ¹⁷O agree remarkably well with experiment.
- Spin-orbit splitting between $d_{5/2}$ - $d_{3/2}$ orbitals too compressed without three-nucleon forces.
- Our calculations of the widhts of the $3/2^+$ resonant states compare reasonably well with experiment.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Low-lying states in ¹⁷O with $V_{\rm srg}$ (2.8/fm) and the center of mass

- Low-lying $1/2^+, 3/2^+$ and $5/2^+$ states in 17 O calculated using PA-EOM-CCSD in 13 major oscillator shells.
- The expectation value of $H_{cm}(\omega) = T_{cm} + \frac{1}{2}mA\omega^2 R_{cm}^2 \frac{3}{2}\hbar\omega$ meassures to what degree the CoM is a Gaussian with oscillator frequency ω .

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Coupled-Cluster wave function factorizes: $\psi_{int}\psi_{cm}$

- Assumption: CoM wave function is always a gaussian (approximately). \bullet
- **•** Take expectation value of the generalized CoM Hamiltonian $H_{cm}(\tilde{\omega}) = T_{cm} + \frac{1}{2} m A \tilde{\omega}^2 R_{cm}^2 - \frac{3}{2} \hbar \tilde{\omega}.$
- CC wave function factorizes and the CoM wave function is a Gaussian with almost constant width $\hbar\tilde{\omega} \sim 16MeV$ for all different $\hbar\omega$ values of the basis.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Shell evolution towards the drip line

FIG. 4 (color online). The experimental [25,26] (data points) and theoretical $[13-15]$ (lines) one- and two-neutron separation energies for the $N = 15-18$ oxygen isotopes. The experimental error is shown if it is larger than the symbol size.

25O neutron separation energy: -820 keV the width was measured to be 90(30) keV giving a lifetime of $t \sim 7x10-21$ sec

C. Hoffman PRL 100 (2008) 152502

[Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Shell evolution in oxygen and fluor

- Low lying states in oxygen and fluorine isotopes calculated using PA/PR-EOMCCSD with "bare" chiral interactions.
- Model space consists of 15 major harmonic oscillator shells with fixed oscillator frequency $\hbar\omega = 32$ MeV.
- 25 O is stable with respect to neutron emission. Interesting inversion of ground state in ²⁵F.
- What is the role of continuum and three-body forces ?

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Cutoff dependence in ²⁴O and ²⁵F

- Variation of the cutoff as a tool to probe the effects of missing many-body forces.
- \bullet No unique cutoff that will reproduce data in ²⁴O and ²⁵F simultaneously.
- **•** Three-nucleon forces are needed. Continuum coupling might bring additional binding in the low-lying states in ²⁵F.

[PA-EOMCC](#page-13-0) [Low-lying states in](#page-16-0) 17 F and 17 O [PA-EOM and Center of Mass](#page-20-0) [Shell-evolution in oxygen and fluor](#page-22-0)

Cutoff dependence in ²⁵O

- Cuttoff dependence on the $3/2^+$ state in 25 O.
- Calculations done in 15 major oscillator shells with fixed oscillator frequency $\hbar\omega = 32$ MeV.
- **•** There are no two-body forces within the family of phase-equivalent low-momentum interactions derived from $N³LO$ that will make ^{25}O unstable.
- \bullet Three-nucleon forces are needed to match theory with experiment in 25 O!

Conclusion

- Coupled-Cluster theory has been successfully applied to weakly bound and unbound helium isotopes.
- **•** Derived and implemented Equation of Motion CCM; calculation of open-shell systems, excited states, density distributions and radii.
- PA-EOM Coupled-cluster method has been succesfully applied to the description of weakly bound and unbound states in ^{17}O and ^{17}F .
- Coupling to the continuum plays a significant role on states close to the particle emission threshold.
- **PR/PA-EOM Coupled-Cluster theory allows for ab initio calculations of** single-particle states and the study of shell-evolution in neutron rich nuclei.
- **•** Provide realistic single-particle energies for shell-model calculations with a core.

Future perspectives

- Revisit Helium chain with 3NF. Spin-orbit splitting in He7 and $H_{\text{P}}Q$
- Matter and charge radii of $¹¹$ Li.</sup>
- Excited states and matter densities for dripline nuclei.
- Coupled Cluster approach to nuclear matter.
- **Construction of effective interaction for shell-model** calculations.
- Coupled-Cluster approach to nuclear reactions; CC-LIT and construction of optical potentials from folding procedures.
- Ab-initio description of 56 Ni, 100 Sn and 208 Pb within reach.

Coupled Cluster for open quantum systems

Open Quantum System. Coupling with continuum taken into account.

Closed Quantum System. No coupling with external continuum.

Berggren Single-particle basis

Complex energies requires a generalized completeness relation

$$
|\Psi(\mathbf{r},t)|^2 = |\Phi(\mathbf{r})|^2 exp(-\frac{\Gamma}{\hbar}t), \ \ E = E_r - i\Gamma/2.
$$

$$
1 = \sum_{n=b,d} |\psi_l(k_n)\rangle\langle\tilde{\psi}_l(k_n)| + \int_{L^+} dk \ k^2 |\psi_l(k)\rangle\langle\tilde{\psi}_l(k)|.
$$

Partial wave decomposition of ⁸He density

- N³LO evolved down to $\lambda = 2.0$ fm⁻¹ from similarity renormalization group theory.
- \bullet Neutron skin in ⁸He is mainly built from s– and p–partial waves. Protons are mainly occupying s– partial waves.

Matter and charge radii of ⁸He using V-srg

- A dependence on ⁸He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

Properties of weakly bound nuclei

Convergence of 4 He and 8 He ground state energies with increasing number of partial waves in the basis.

Matter and charge radii of ⁴He using V-srg

- A dependence on ⁴He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

Properties of weakly bound nuclei

$\hbar\omega$ dependence on ⁴He and ⁸He charge and matter radii.

The role of continuum in calculations of oxygen isotopes

- Shell model calculations of oxygen isotopes using two-body effective interactions and second order perturbation theory.
- Calculations starting from a ^{16}O core gives ^{25}O bound.
- \bullet Starting from a ²²O core gives ²⁵O unbound in both HO and Gamow basis.
- Inclusion of many-body effects crucial, continuum plays a role in the description of excited states.
- K. Tsukiyama, M. Hjorth-Jensen, G. Hagen, Phys. Rev. C(R) 80, 051301 (2009)

⁴−⁸He with smooth v-lowk

Convergence of CCSD results

INT workshop 2010 [Coupled-Cluster approach to nuclear structure](#page-0-0)

Convergence of CCSD energy with $2n + l \leq 10$ truncation.

- \bullet ⁵He ground state energy starting with oscillator bases given for different $\hbar\omega$ values.
- Weak $\hbar\omega$ dependence, Results are well converged. $\Delta Re[E] \sim 0.1$ MeV, $\Delta Im[E] \sim 0.01$ MeV

INT workshop 2010 [Coupled-Cluster approach to nuclear structure](#page-0-0)

Convergence of CCSD energy.

CCSD convergence of ⁵He ground state energy for the $s - d$ space (300 orbitals) using $n = 20$ discretization points for L^+ . The calculation where performed using two very different L^+ contours

