Three-body Resonances and Applications in Nuclear Astrophysics

Three-body Resonances

- ✔ Hyperspherical Adiabatic Expansion Method
- \checkmark Resonances and the Complex Scaling Method
- \checkmark Decay of three-body resonances and Energy Distributions

Applications in Nuclear Astrophysics

- \checkmark Three-body radiative capture
	- **Sequential**
	- Direct
- \blacktriangleright A=5 and A=8 gaps
	- Production of ${}^{12}C$, ${}^{6}He$, ${}^{9}Be$

Three-body Resonances and Applications in Nuclear Astrophysics

Three-body Resonances Three-body Resonances

- ✔ Hyperspherical Adiabatic Expansion Method $\boldsymbol{\nu}$ Hyperspherical Adiabatic Expansion Method
- Resonances and the Complex Scaling Method $\boldsymbol{\nu}$ Resonances and the Complex Scaling Method
- ✔ Decay of three-body resonances and Energy Distributions $\boldsymbol{\nu}$ Decay of three-body resonances and Energy Distributions

Applications in Nuclear Astrophysics

- \checkmark Three-body radiative capture
	- **Sequential**
	- Direct

 $\boldsymbol{\vee}$ A=5 and A=8 gaps

• Production of ${}^{12}C$, ${}^{6}He$, ${}^{9}Be$

Three-body Resonances and Applications in Nuclear Astrophysics

Three-body Resonances Three-body Resonances

- ✔ Hyperspherical Adiabatic Expansion Method $\boldsymbol{\nu}$ Hyperspherical Adiabatic Expansion Method
- Resonances and the Complex Scaling Method $\boldsymbol{\nu}$ Resonances and the Complex Scaling Method
- ✔ Decay of three-body resonances and Energy Distributions $\boldsymbol{\nu}$ Decay of three-body resonances and Energy Distributions

Applications in Nuclear Astrophysics Applications in Nuclear Astrophysics

- ✔ Three-body radiative capture $\boldsymbol{\nu}$ Three-body radiative capture
	- Sequential • Sequential
	- Direct • Direct
- $A 5$ and $A 6$ gaps $\boldsymbol{\checkmark}$ A=5 and A=8 gaps
	- $\frac{110\mu\mu\mu\mu\sigma}{120}$ • Production of ${}^{12}C, {}^{6}He, {}^{9}Be$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bullet \frac{\vec{r}_{23}}{\sqrt{r}_{1,23}} \bullet 3 \quad \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$

\n
$$
\sqrt{r}_{1,23}^2 \qquad \frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} = \frac{h^2}{2m} \left[\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{\Lambda}^2(\alpha, \Omega_x, \Omega_y)}{\rho^2} \right]
$$

\n
$$
\Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho, \Omega)
$$

\nJacobi coordinates
\n
$$
\vec{x}_1 = \sqrt{\frac{\mu_{23}}{m}} \vec{r}_{23} \qquad \qquad \rho^2 = x_1^2 + y_1^2
$$

\n
$$
\alpha_1 = \arctan(x_1/y_1)
$$

\n
$$
\vec{y}_1 = \sqrt{\frac{\mu_{1,23}}{m}} \vec{r}_{1,23} \qquad \qquad \Omega_{x_1}, \Omega_{y_1}
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \underbrace{\begin{array}{c} \vec{r}_{23} \\ \hline \\ \n\end{array}}_{\text{1,23}} \otimes 3 \underbrace{\begin{bmatrix} p_{23}^2 \\ 2\mu_{23} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \end{bmatrix}}_{\text{2},\mu_{23}} \Psi = E\Psi
$$
\n
$$
\begin{array}{c} \n\sqrt{r}_{1,23} \\ \hline \\ \n\end{array}} \otimes \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} = \frac{\hbar^2}{2m} \left[\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{\Lambda}^2(\alpha, \Omega_x, \Omega_y)}{\rho^2} \right] \Psi = E\Psi
$$
\n
$$
\Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_{n} f_n(\rho) \Phi_n(\rho, \Omega)
$$
\nJacobi coordinates

\n
$$
\vec{x}_1 = \sqrt{\frac{\mu_{23}}{m}} \vec{r}_{23}
$$
\n
$$
\rho^2 = x_1^2 + y_1^2
$$
\n
$$
\alpha_1 = \arctan(x_1/y_1)
$$
\n
$$
\vec{y}_1 = \sqrt{\frac{\mu_{1,23}}{m}} \vec{r}_{1,23}
$$
\n
$$
\Omega_{x_1}, \Omega_{y_1}
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigodot \frac{\vec{r}_{23}}{\sqrt{r}_{1,23}} \bigodot 3 \quad \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$

\n
$$
\bigodot 1 \qquad \frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} = \frac{\hbar^2}{2m} \left[\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{\Lambda}^2(\alpha, \Omega_x, \Omega_y)}{\rho^2} \right]
$$

\n
$$
\Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho, \Omega)
$$

\nJacobi coordinates
\n
$$
\vec{x}_1 = \sqrt{\frac{\mu_{23}}{m}} \vec{r}_{23} \qquad \qquad \text{Myperspheric coordinates}
$$

$$
\vec{y}_1 = \sqrt{\frac{\mu_{1,23}}{m}} \vec{r}_{1,23}
$$

$$
\rho^2 = x_1^2 + y_1^2
$$

\n
$$
\alpha_1 = \arctan(x_1/y_1)
$$

\n
$$
\Omega_{x_1}, \Omega_{y_1}
$$

E. Garrido, Weakly Bounds Systems in Atomic and Nuclear Physics, Seattle, 8th of March, 2010

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigcirc \frac{\vec{r}_{23}}{\sqrt{\vec{r}_{1,23}}} \bigcirc 3 \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$

\n
$$
\sqrt{\vec{r}_{1,23}} \qquad \frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} = \frac{\hbar^2}{2m} \left[\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{\Lambda}^2(\alpha, \Omega_x, \Omega_y)}{\rho^2} \right]
$$

\n
$$
\Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho, \Omega)
$$

\n
$$
\sum_n \left[-\frac{15}{4} \frac{1}{\rho^2} f_n \Phi_n + \frac{\partial^2 f_n}{\partial \rho^2} \Phi_n + 2 \frac{\partial f_n}{\partial \rho} \frac{\partial \Phi_n}{\partial \rho} + f_n \frac{\partial^2 \Phi_n}{\partial \rho^2} + \frac{2mE}{\hbar^2} f_n \Phi_n - -\frac{f_n}{\rho^2} \left(\hat{\Lambda}^2 \Phi_n + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n \right) \right] = 0
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigodot \frac{\vec{r}_{23}}{\left(\vec{r}_{1,23}^2 + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23})\right)\Psi = E\Psi}{\left(\vec{r}_{1,23}^1 + \frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}}\right)} = \frac{\hbar^2}{2m} \bigg[\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho}\frac{\partial}{\partial \rho} - \frac{\hat{\Lambda}^2(\alpha,\Omega_x,\Omega_y)}{\rho^2}\bigg]
$$

$$
\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho)\Phi_n(\rho,\Omega)
$$

Adiabatic assumption: The hyperangles change much faster than ρ . We can solve the angular part for fixed values of ρ .

$$
\sum_{n} \left[-\frac{15}{4} \frac{1}{\rho^2} f_n \Phi_n + \frac{\partial^2 f_n}{\partial \rho^2} \Phi_n + 2 \frac{\partial f_n}{\partial \rho} \frac{\partial \Phi_n}{\partial \rho} + f_n \frac{\partial^2 \Phi_n}{\partial \rho^2} + \frac{2mE}{\hbar^2} f_n \Phi_n - \frac{f_n}{\rho^2} \left(\hat{\Lambda}^2 \Phi_n + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n \right) \right] = 0
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigcirc \frac{\vec{r}_{23}}{\vec{r}_{1,23}} \bigcirc 3 \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$

$$
\bigcirc 1
$$

$$
\Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_{n} f_n(\rho) \Phi_n(\rho, \Omega)
$$

Adiabatic assumption: The hyperangles change much faster than ρ . We can solve the angular part for fixed values of ρ .

Step $1 \rightarrow \hat{\Lambda}^2 \Phi_n(\rho,\Omega) + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho,\Omega) = \lambda_n(\rho) \Phi_n(\rho,\Omega)$

$$
\sum_{n} \left[-\frac{15}{4} \frac{1}{\rho^2} f_n \Phi_n + \frac{\partial^2 f_n}{\partial \rho^2} \Phi_n + 2 \frac{\partial f_n}{\partial \rho} \frac{\partial \Phi_n}{\partial \rho} + f_n \frac{\partial^2 \Phi_n}{\partial \rho^2} + \frac{2mE}{\hbar^2} f_n \Phi_n - \frac{f_n}{\rho^2} \left(\hat{\Lambda}^2 \Phi_n + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n \right) \right] = 0
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigodot \frac{\vec{r}_{23}}{\vec{r}_{1,23}} \bigodot 3 \quad \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$

$$
1 \qquad \Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_{n} f_n(\rho) \Phi_n(\rho, \Omega)
$$

Adiabatic assumption: The hyperangles change much faster than ρ . We can solve the angular part for fixed values of ρ .

Step 1
$$
\rightarrow \left[\hat{\Lambda}^2 \Phi_n(\rho,\Omega) + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho,\Omega) = \lambda_n(\rho) \Phi_n(\rho,\Omega)\right]
$$

$$
\sum_n \left[-\frac{15}{4} \frac{1}{\rho^2} f_n \Phi_n + \frac{\partial^2 f_n}{\partial \rho^2} \Phi_n + 2 \frac{\partial f_n}{\partial \rho} \frac{\partial \Phi_n}{\partial \rho} + f_n \frac{\partial^2 \Phi_n}{\partial \rho^2} + \frac{2mE}{\hbar^2} f_n \Phi_n - \frac{f_n}{\rho^2} \left(\hat{\Lambda}^2 \Phi_n + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n\right)\right] = 0
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigodot \frac{\vec{r}_{23}}{\vec{r}_{1,23}} \bigodot 3 \quad \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$

$$
1 \qquad \Psi(\vec{x}, \vec{y}) = \frac{1}{\rho^{5/2}} \sum_{n} f_n(\rho) \Phi_n(\rho, \Omega)
$$

Adiabatic assumption: The hyperangles change much faster than ρ . We can solve the angular part for fixed values of ρ .

$$
\begin{aligned}\n\text{Step 1} &\rightarrow \frac{\hat{\Lambda}^2 \Phi_n(\rho, \Omega) + \frac{2m\rho^2}{\rho} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho, \Omega)}{\Phi_n(\rho, \Omega)} = \sum_q C_q^{(n)} \mathcal{Y}_q(\Omega) \\
&\rightarrow \frac{15}{q} \left[-\frac{15}{4} \frac{1}{\rho^2} f_n \Phi_n + \frac{\partial^2 f_n}{\partial \rho^2} \Phi_n + 2 \frac{\partial f_n}{\partial \rho} \frac{\partial \Phi_n}{\partial \rho} + f_n \frac{\partial^2 \Phi_n}{\partial \rho^2} \right] + \frac{2mE}{\hbar^2} f_n \Phi_n - \\
&\rightarrow \frac{f_n}{\rho^2} \left(\hat{\Lambda}^2 \Phi_n + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n \right) \right] = 0\n\end{aligned}
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigodot \frac{\vec{r}_{23}}{\vec{r}_{1,23}} \bigodot 3 \quad \left[\frac{p_{23}^2}{2\mu_{23}} + \frac{p_{1,23}^2}{2\mu_{1,23}} + V_{12}(r_{12}) + V_{13}(r_{13}) + V_{23}(r_{23}) \right] \Psi = E\Psi
$$
\n
$$
\overrightarrow{r}_{1,23} \qquad \overrightarrow{\Psi}(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}} \sum_{n} f_n(\rho) \Phi_n(\rho,\Omega)
$$
\nAdiabatic assumption: The hyperangles change much faster than ρ . We can solve the angular part for fixed values of ρ .

\nStep 1→ $\hat{\Lambda}^2 \Phi_n(\rho,\Omega) + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho,\Omega) = \lambda_n(\rho) \Phi_n(\rho,\Omega)$

$$
\mathbf{Step 2} \rightarrow \left[\frac{\partial^2}{\partial \rho^2} + \frac{2mE}{\hbar^2} - \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4}\right)\right] f_n(\rho) + \sum_{n'} \left[2P_{nn'}(\rho)\frac{\partial}{\partial \rho} + Q_{nn'}(\rho)\right] f_{n'}(\rho) = 0
$$

$$
\left[\sum_{n} \left[-\frac{15}{4} \frac{1}{\rho^2} f_n \Phi_n + \frac{\partial^2 f_n}{\partial \rho^2} \Phi_n + 2 \frac{\partial f_n}{\partial \rho} \frac{\partial \Phi_n}{\partial \rho} + f_n \frac{\partial^2 \Phi_n}{\partial \rho^2} + \frac{2mE}{\hbar^2} f_n \Phi_n - \frac{f_n}{\rho^2} \lambda_n \Phi_n \right] = 0 \right]
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

$$
2 \bigodot \n\begin{array}{c}\n\vec{r}_{23} \\
\hline\n\uparrow \\
\hline\n\uparrow \\
\hline\n\uparrow \\
\hline\n\downarrow \\
\hline\n\downarrow
$$

Step 1
$$
\rightarrow \hat{\Lambda}^2 \Phi_n(\rho,\Omega) + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho,\Omega) = \lambda_n(\rho) \Phi_n(\rho,\Omega)
$$

Step 2
$$
\rightarrow \left[\frac{\partial^2}{\partial \rho^2} + \frac{2mE}{\hbar^2} - \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4}\right)\right] f_n(\rho) + \sum_{n'} \left[2P_{nn'}(\rho)\frac{\partial}{\partial \rho} + Q_{nn'}(\rho)\right] f_{n'}(\rho) = 0
$$

$$
P_{nn'}(\rho) = \langle \Phi_n(\rho,\Omega) | \frac{\partial}{\partial \rho} | \Phi_{n'}(\rho,\Omega) \rangle \qquad Q_{nn'}(\rho) = \langle \Phi_n(\rho,\Omega) | \frac{\partial^2}{\partial \rho^2} | \Phi_{n'}(\rho,\Omega) \rangle
$$

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

✔ Hyperspherical Adiabatic Expansion Method \blacktriangledown Hyperspherical Adiabatic Expansion Method

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Energy Method

$$
E = |E|e^{-2i\theta_R}; \kappa = |\kappa|e^{-i\theta_R}
$$

Resonances appear as poles of the S-matrix in the lower half of the momentum plane

$$
f_{in}(\rho) \rightarrow \sqrt{\kappa \rho} \left(H_{K_n+2}^{(2)}(\kappa \rho) \delta_{i,n} + S_{i,n} H_{K_n+2}^{(1)}(\kappa \rho) \right)
$$

Step 1
$$
\rightarrow \hat{\Lambda^2 \Phi_n(\rho, \Omega)} + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho, \Omega) = \lambda_n(\rho) \Phi_n(\rho, \Omega)
$$

Step $2\rightarrow \left[\frac{\partial^2}{\partial \rho^2} + \frac{2mE}{\hbar^2} - \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4}\right)\right] f_n(\rho) + \sum_{n'} \left[2P_{nn'}(\rho)\frac{\partial}{\partial \rho} + Q_{nn'}(\rho)\right] f_{n'}(\rho) = 0$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Energy Method

$$
E = |E|e^{-2i\theta_R}; \kappa = |\kappa|e^{-i\theta_R}
$$

Resonances appear as poles of the S-matrix in the lower half of the momentum plane

The resonance wave functions diverge

$$
f_n(\rho) \to \sqrt{\kappa \rho} H_{K_n+2}^{(1)}(\kappa \rho) \to e^{|\kappa| \rho \sin \theta_R} e^{i|\kappa| \rho \cos \theta_R}
$$

Step 1
$$
\rightarrow \hat{\Lambda^2 \Phi_n}(\rho, \Omega) + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho, \Omega) = \lambda_n(\rho) \Phi_n(\rho, \Omega)
$$

Step 2
$$
\rightarrow \left[\frac{\partial^2}{\partial \rho^2} + \frac{2mE}{\hbar^2} - \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4}\right)\right] f_n(\rho) + \sum_{n'} \left[2P_{nn'}(\rho)\frac{\partial}{\partial \rho} + Q_{nn'}(\rho)\right] f_{n'}(\rho) = 0
$$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Scaling Method: All the radial coordinates are rotated into the complex plane

$$
\begin{array}{ccc}\nx & \to & xe^{i\theta} \\
y & \to & ye^{i\theta}\n\end{array}\n\right\} \Rightarrow\n\begin{cases}\n\rho \to \rho e^{i\theta} \\
\alpha, \Omega_x, \Omega_y\n\end{cases}\n\text{unchanged}
$$

The resonance wave functions diverge

$$
f_n(\rho) \to \sqrt{\kappa \rho} H_{K_n+2}^{(1)}(\kappa \rho) \to e^{|\kappa| \rho \sin \theta_R} e^{i|\kappa| \rho \cos \theta_R}
$$

Step 1
$$
\rightarrow \widehat{\Lambda^2 \Phi_n(\rho,\Omega)} + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho,\Omega) = \lambda_n(\rho) \Phi_n(\rho,\Omega)
$$

Step 2
$$
\rightarrow \left[\frac{\partial^2}{\partial \rho^2} + \frac{2mE}{\hbar^2} - \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4}\right)\right] f_n(\rho) + \sum_{n'} \left[2P_{nn'}(\rho)\frac{\partial}{\partial \rho} + Q_{nn'}(\rho)\right] f_{n'}(\rho) = 0
$$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Scaling Method: All the radial coordinates are rotated into the complex plane

$$
\begin{array}{ccc}\nx & \to & xe^{i\theta} \\
y & \to & ye^{i\theta}\n\end{array}\n\right\} \Rightarrow\n\begin{cases}\n\rho \to \rho e^{i\theta} \\
\alpha, \Omega_x, \Omega_y\n\end{cases}\n\text{unchanged}
$$

As soon as $\theta \!>\! \theta_{_{\bm{R}}}$ the resonance wave function dies exponentially **As a bound state!!!**
 $f_n(\rho e^{i\theta}) \to \sqrt{\kappa \rho e^{i\theta}} H_{K_n+2}^{(1)}(\kappa \rho e^{i\theta}) \to e^{-|\kappa| \rho \sin(\theta - \theta_R)}$

Step 1
$$
\rightarrow \hat{\Lambda}^2 \Phi_n(\rho,\Omega) + \frac{2m\rho^2}{\hbar^2} (V_{12} + V_{13} + V_{23}) \Phi_n(\rho,\Omega) = \lambda_n(\rho) \Phi_n(\rho,\Omega)
$$

Step $2\rightarrow \left[\frac{\partial^2}{\partial \rho^2} + \frac{2mE}{\hbar^2} - \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4}\right)\right] f_n(\rho) + \sum_{\mu} \left[2P_{nn'}(\rho)\frac{\partial}{\partial \rho} + Q_{nn'}(\rho)\right] f_{n'}(\rho) = 0$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Scaling Method: All the radial coordinates are rotated into the complex plane

$$
\begin{array}{ccc}\nx & \to & xe^{i\theta} \\
y & \to & ye^{i\theta}\n\end{array}\n\right\} \Rightarrow\n\begin{cases}\n\rho \to \rho e^{i\theta} \\
\alpha, \Omega_x, \Omega_y\n\end{cases}\n\text{unchanged}
$$

As soon as $\theta \!>\! \theta_{_{\bm{R}}}$ the resonance wave function dies exponentially **As a bound state!!!** $f_n(\rho e^{i\theta}) \to \sqrt{\kappa \rho e^{i\theta}} H_{K_n+2}^{(1)}(\kappa \rho e^{i\theta}) \to e^{-|\kappa| \rho \sin(\theta - \theta_R)}$

After complex scaling the resonances can be computed as "bound states" with complex energy

$$
E = E_R - i\frac{\Gamma_R}{2}
$$

Step $2\rightarrow \left[\frac{\partial^2}{\partial\rho^2}+\frac{2mE}{\hbar^2}-\frac{1}{\rho^2}\left(\lambda_n(\rho)+\frac{15}{4}\right)\right]f_n(\rho)+\sum_{l} 2P_{nn'}(\rho)\frac{\partial}{\partial\rho}+Q_{nn'}(\rho)\right]f_{n'}(\rho)=0$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Scaling Method: All the radial coordinates are rotated into the complex plane

$$
\begin{array}{ccc}\nx & \to & xe^{i\theta} \\
y & \to & ye^{i\theta}\n\end{array}\n\right\} \Rightarrow\n\begin{cases}\n\rho \to \rho e^{i\theta} \\
\alpha, \Omega_x, \Omega_y\n\end{cases}\n\text{unchanged}
$$

As soon as $\theta \!>\! \theta_{_{\bm{R}}}$ the resonance wave function dies exponentially **As a bound state!!!** $f_n(\rho e^{i\theta}) \to \sqrt{\kappa \rho e^{i\theta}} H_{K_n+2}^{(1)}(\kappa \rho e^{i\theta}) \to e^{-|\kappa| \rho \sin(\theta - \theta_R)}$

$$
f_n(\rho) \stackrel{\rho \to \infty}{\to} \exp(-\kappa \rho)
$$

$$
\downarrow \theta < \pi/2
$$

$$
f_n(\rho e^{i\theta}) \stackrel{\rho \to \infty}{\to} \exp(-\kappa \rho \cos \theta)
$$

Bound states Continuum states $f_n(\rho e^{i\theta}) \stackrel{\rho \to \infty}{\to} \sin(\kappa \rho e^{i\theta} + \delta)$ $f_n(\rho_{max}) = 0$
 $\kappa_n \approx e^{-i\theta} n \pi / \rho_{max}$ $E_n \approx e^{-2i\theta} (n\pi/\rho_{max})^2/2m$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Complex Scaling Method: All the radial coordinates are rotated into the complex plane

$$
\begin{array}{ccc}\nx & \to & xe^{i\theta} \\
y & \to & ye^{i\theta}\n\end{array}\n\right\} \Rightarrow\n\begin{cases}\n\rho \to \rho e^{i\theta} \\
\alpha, \Omega_x, \Omega_y\n\end{cases}\n\text{unchanged}
$$

As soon as $\theta \!>\! \theta_{_{\bm{R}}}$ the resonance wave function dies exponentially **As a bound state!!!** $f_n(\rho e^{i\theta}) \to \sqrt{\kappa \rho e^{i\theta}} H_{K_n+2}^{(1)}(\kappa \rho e^{i\theta}) \to e^{-|\kappa| \rho \sin(\theta - \theta_R)}$

$$
f_n(\rho) \stackrel{\rho \to \infty}{\to} \exp(-\kappa \rho)
$$

$$
\downarrow \theta < \pi/2
$$

$$
f_n(\rho e^{i\theta}) \stackrel{\rho \to \infty}{\to} \exp(-\kappa \rho \cos \theta)
$$

Bound states and states Continuum states

 $f_n(\rho e^{i\theta}) \stackrel{\rho \to \infty}{\to} \sin(\kappa \rho e^{i\theta} + \delta)$ $\kappa_n \approx e^{-i\theta} n\pi / \rho_{max} = 0$ $E_n \approx e^{-2i\theta} (n\pi/\rho_{max})^2/2m$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Bound states $f_n(\rho) \stackrel{\rho \to \infty}{\to} \exp(-\kappa \rho)$
 $\phi < \pi/2$
 $f_n(\rho e^{i\theta}) \stackrel{\rho \to \infty}{\to} \exp(-\kappa \rho \cos \theta)$

Continuum states
\n
$$
f_n(\rho e^{i\theta}) \stackrel{\rho \to \infty}{\longrightarrow} \sin(\kappa \rho e^{i\theta} + \delta)
$$
\n
$$
f_n(\rho_{max}) = 0
$$
\n
$$
\kappa_n \approx e^{-i\theta} n \pi / \rho_{max}
$$
\n
$$
E_n \approx e^{-2i\theta} (n \pi / \rho_{max})^2 / 2m
$$

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

Resonances and The Complex Scaling Method ✔ Resonances and The Complex Scaling Method

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \sum_q C_q^{(n)}(\rho) \mathcal{Y}_q(\Omega)
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\Psi(\vec{x},\vec{y}) \stackrel{\rho\to\infty}{\to} \frac{1}{\rho^{5/2}} e^{i\kappa\rho} \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega)
$$

The asymptotic coefficients can be obtained from the complex rotated wave function

It can be proved that

$$
\Psi(\vec{k}_x,\vec{k}_y) \propto f(\kappa) \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa)
$$

D.V. Fedorov et al., FBS 34 (2003) 33

Hyperspheric coordinates

$$
\kappa^2 = k_x^2 + k_y^2
$$

$$
\alpha_{\kappa}=\arctan(k_x/k_y)
$$

$$
\Omega_{k_x}, \Omega_{k_y}
$$

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \sum_q C_q^{(n)}(\rho) \mathcal{Y}_q(\Omega)
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\Psi(\vec{x},\vec{y}) \stackrel{\rho\rightarrow\infty}{\rightarrow} \frac{1}{\rho^{5/2}} e^{i\kappa\rho} \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega)
$$

The asymptotic coefficients can be obtained from the complex rotated wave function

It can be proved that

$$
\Psi(\vec{k}_x,\vec{k}_y) \propto f(\kappa) \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa)
$$

D.V. Fedorov et al., FBS 34 (2003) 33

Hyperspheric coordinates

$$
\kappa^2 = k_x^2 + k_y^2
$$

$$
\alpha_{\kappa}=\arctan(k_x/k_y)
$$

$$
\Omega_{k_x}, \Omega_{k_y}
$$

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\sum_q C_q^{(n)}(\rho)\mathcal{Y}_q(\Omega)
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\left|\Psi(\vec{x},\vec{y})\stackrel{\rho\rightarrow\infty}{\rightarrow}\frac{1}{\rho^{5/2}}e^{i\kappa\rho}\sum_{n}\sum_{q}D_{q}^{(n)}\mathcal{Y}_{q}(\Omega)\right|
$$

The asymptotic coefficients can be obtained from the complex rotated wave function

It can be proved that

$$
\Psi(\vec{k}_x,\vec{k}_y) \propto f(\kappa) \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa)
$$

D.V. Fedorov et al., FBS 34 (2003) 33

Hyperspheric coordinates $k^2 = k_x^2 + k_y^2$ $\alpha_{\kappa} = \arctan(k_x/k_y)$ $\Omega_{k_x}, \Omega_{k_y}$

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\boxed{\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\sum_q C_q^{(n)}(\rho)\mathcal{Y}_q(\Omega)}
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\Psi(\vec{x},\vec{y}) \stackrel{\rho\rightarrow\infty}{\rightarrow} \frac{1}{\rho^{5/2}} e^{i\kappa\rho} \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega) = \lim_{\rho\rightarrow\infty} \int d^3k_x d^3k_y e^{i(\vec{x}\cdot\vec{k}_x+\vec{y}\cdot\vec{k}_y)} \psi(\vec{k}_x,\vec{k}_y)
$$

It can be proved that

$$
\Psi(\vec{k}_x,\vec{k}_y) \propto f(\kappa) \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa)
$$

D.V. Fedorov et al., FBS 34 (2003) 33

Hyperspheric coordinates

$$
\kappa^2 = k_x^2 + k_y^2
$$

$$
\alpha_{\kappa} = \arctan(k_x / k_y)
$$

$$
\Omega_{k_x}, \Omega_{k_y}
$$

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\boxed{\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\sum_q C_q^{(n)}(\rho)\mathcal{Y}_q(\Omega)}
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\Psi(\vec{x},\vec{y}) \stackrel{\rho\rightarrow\infty}{\rightarrow} \frac{1}{\rho^{5/2}} e^{i\kappa\rho} \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega) = \lim_{\rho\rightarrow\infty} \int d^3k_x d^3k_y e^{i(\vec{x}\cdot\vec{k}_x + \vec{y}\cdot\vec{k}_y)} \psi(\vec{k}_x,\vec{k}_y)
$$

It can be proved that

$$
\Psi(\vec{k}_x,\vec{k}_y) \propto f(\kappa) \sum_n \sum_q D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa) \Bigg|
$$

D.V. Fedorov et al., FBS 34 (2003) 33

Hyperspheric coordinates

$$
\kappa^2 = k_x^2 + k_y^2
$$

$$
\alpha_{\kappa} = \arctan(k_x / k_y)
$$

$$
\Omega_{k_x}, \Omega_{k_y}
$$
Three-body Resonances Three-body Resonances

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\boxed{\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}}\sum_n f_n(\rho)\sum_q C_q^{(n)}(\rho)\mathcal{Y}_q(\Omega)}
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\Psi(\vec{x}, \vec{y}) \stackrel{\rho \to \infty}{\longrightarrow} \frac{1}{\rho^{5/2}} e^{i\kappa \rho} \sum_{n} \sum_{q} D_q^{(n)} \mathcal{Y}_q(\Omega) = \lim_{\rho \to \infty} \int d^3 k_x d^3 k_y e^{i(\vec{x} \cdot \vec{k}_x + \vec{y} \cdot \vec{k}_y)} \psi(\vec{k}_x, \vec{k}_y)
$$
\nIt can be proved that
\n
$$
\Psi(\vec{k}_x, \vec{k}_y) \propto f(\kappa) \sum_{n} \sum_{q} D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa)
$$
\nIt contains the information about the energy distribution

D.V. Fedorov et al., FBS 34 (2003) 33

between the three particles after the decay

Three-body Resonances Three-body Resonances

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

$$
\Psi(\vec{x},\vec{y}) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \Phi_n(\rho,\Omega) = \frac{1}{\rho^{5/2}} \sum_n f_n(\rho) \sum_q C_q^{(n)}(\rho) \mathcal{Y}_q(\Omega)
$$

The large distance part of the wave function contains the information about how the three-body resonance decays

$$
\Psi(\vec{x}, \vec{y}) \stackrel{\rho \to \infty}{\to} \frac{1}{\rho^{5/2}} e^{i\kappa \rho} \sum_{n} \sum_{q} D_q^{(n)} \mathcal{Y}_q(\Omega) = \lim_{\rho \to \infty} \int d^3 k_x d^3 k_y e^{i(\vec{x} \cdot \vec{k}_x + \vec{y} \cdot \vec{k}_y)} \psi(\vec{k}_x, \vec{k}_y)
$$
\nIt can be proved that ...
\n
$$
\Psi(\vec{k}_x, \vec{k}_y) \propto f(\kappa) \sum_{n} \sum_{q} D_q^{(n)} \mathcal{Y}_q(\Omega_\kappa)
$$
\n
$$
P(\alpha_\kappa) = \int d\Omega_{k_x} d\Omega_{k_y} |F(\Omega_\kappa)|^2
$$
\n
$$
D.V. \text{ Fedorov et al., } \text{FBS 34 (2003) 33}
$$
\n
$$
\sin^2 \alpha_\kappa = k_x^2 / \kappa^2
$$
\n
$$
\cos^2 \alpha_\kappa = k_y^2 / \kappa^2
$$

Three-body Resonances Three-body Resonances

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

 \mathcal{D}

Three-body Resonances Three-body Resonances

✔ Decay of three-body resonances and Energy Distributions $\mathbf v$ Decay of three-body resonances and Energy Distributions

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

In the early stages of the life cycle the source of energy is the hydrogen nuclei

The **pp-chain** transforms four protons into ⁴He

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

In the early stages of the life cycle the source of energy is the hydrogen nuclei

The **pp-chain** transforms four protons into ⁴He

When the hydrogen fuel is exhausted the nuclear reactions in the core stop

The gravitational collapse of the core raises the temperature

The fusion of the external

layers begin: Red giant phase

E. Garrido, *Weakly Bounds Systems in Atomic and Nuclear Physics*, Seattle, 8th of March, 2010

Production of heavier nuclei requires to skip the A=5 and A=8 gaps

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

This fact suggests to understand the triple α reaction as two consecutive two-body processes. **Sequential process**

This fact suggests to understand the triple α reaction as two consecutive two-body processes. **Sequential process**

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

Stars with M∼10M⊙⇨**Hot bubble** as a remnant of the supernova explosion

Hot bubble: rapidly expanding matter with a significant **neutron excess** and **T ~ 7-10 GK**

Ideal site for the **r-process** to take place

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

Stars with M∼10M⊙⇨**Hot bubble** as a remnant of the supernova explosion

Hot bubble: rapidly expanding matter with a significant **neutron excess** and **T ~ 7-10 GK**

Ideal site for the **r-process** to take place

In this scenario **other reactions can play a role in the bridging of the A=5 and A=8 gaps**

$$
\alpha + \alpha + n \rightarrow {}^{9}Be + \gamma
$$

$$
\alpha + n + n \rightarrow {}^{6}He + \gamma
$$

⁵He (α+n) has a rather broad p-resonance

It is not obvious that a sequential description is appropriate

A method **including sequential and direct capture** is desirable!!!

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

$$
\alpha + \alpha + \alpha \rightarrow {}^{12}\text{C} + \gamma
$$

\n
$$
\alpha + n + n \rightarrow {}^{6}\text{He} + \gamma
$$

\n
$$
\alpha + \alpha + n \rightarrow {}^{9}\text{Be} + \gamma
$$

What is the production rate for the different reactions in the stellar medium??

How many reactions per unit time and per unit volume??

 $a+b+c \rightarrow d+\gamma$

Radiative capture process

$$
P_{abc}(\rho, T) = n_a n_b n_c \frac{\hbar^3}{c^2} \left(\frac{m_a + m_b + m_c}{m_a m_b m_c} \right)^{3/2} \frac{2\pi}{(K_B T)^3} e^{-\frac{Q}{K_B T}} \int_{|Q|}^{\infty} E^2 \sigma_{\gamma, d}(E) e^{-\frac{E}{K_B T}} dE
$$

d is a bound state of a, b , and c

 $Q = m_d - m_a - m_b - m_c$

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

$$
\begin{array}{|c|c|}\hline\n\alpha + \alpha + \alpha \rightarrow {}^{12}\text{C} + \gamma \\
\hline\n\alpha + n + n \rightarrow {}^{6}\text{He} + \gamma \\
\hline\n\alpha + \alpha + n \rightarrow {}^{9}\text{Be} + \gamma\n\end{array}
$$
\n**What is the production rate for the different reactions in the stellar medium?**\n
$$
\begin{array}{|c|c|}\hline\n\alpha + \alpha + n \rightarrow {}^{9}\text{Be} + \gamma\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\hline\n\text{How many reactions per unit time} \\
\hline\n\alpha + b + c \rightarrow d + \gamma\n\end{array}
$$
\nradiative capture process

\n
$$
P_{abc}(\rho, T) = n_a n_b n_c \frac{\hbar^3}{c^2} \left(\frac{m_a + m_b + m_c}{m_a m_b m_c}\right)^{3/2} \frac{2\pi}{(K_B T)^3} e^{-\frac{Q}{K_B T}} \int_{|Q|}^{\infty} E^2 \sigma_{\gamma, d}(E) e^{-\frac{E}{K_B T}} dE
$$
\n
$$
d \text{ is a bound state of } a, b, \text{ and } c
$$
\n
$$
Q = m_d - m_a - m_b - m_c
$$

$\alpha + n + n \rightarrow {}^6\text{He} + \gamma$	reactions in the stellar medium?
$\alpha + \alpha + n \rightarrow {}^9\text{Be} + \gamma$	How many reactions per unit time and per unit volume?
$ a + b + c \rightarrow d + \gamma $	radiative capture process
$P_{abc}(\rho, T) = n_a n_b n_c \frac{\hbar^3}{c^2} \left(\frac{m_a + m_b + m_c}{m_a m_b m_c} \right)^{3/2} \frac{2\pi}{(K_B T)^3} e^{-\frac{Q}{K_B T}} \int_{ Q }^{\infty} E^2 \sigma_{\gamma, d}(E) e^{-\frac{E}{K_B T}} dE$	
$\sigma_{\gamma, d} = \sum_{\lambda} \left(\sigma_{\gamma, d}^{E\lambda} + \sigma_{\gamma, d}^{M\lambda} \right)$	$\sigma_{\gamma, d}^{E\lambda}(E_{\gamma}) = \frac{\alpha(2\pi)^3 \hbar c(\lambda + 1)}{\lambda [(2\lambda + 1)!!]^2} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2\lambda - 1} \frac{d\mathcal{B}(E\lambda)}{dE_{\gamma}}$
$\beta(E\lambda, I_i \rightarrow nI_f) = \sum_{\mu, M_f} \langle nI_f, M_f \mathcal{M}_{\mu}(E\lambda) I_i, M_i \rangle ^2; \mathcal{M}_{\mu}(E\lambda) = e \sum_{i} Z_i r_i^{\lambda} Y_{\lambda, \mu}(\hat{r}_i)$	

Applications in Nuclear Astrophysics Applications in Nuclear Astrophysics \checkmark Three-body radiative capture. The A=5 and A=8 gaps. ✔ Three-body radiative capture. The A=5 and A=8 gaps. $\alpha + \alpha + \alpha \rightarrow {}^{12}C + \gamma$ *What is the production rate for the different reactions in the stellar medium??* $\alpha + n + n \rightarrow {}^{6}He + \gamma$ How many reactions per unit time $\alpha + \alpha + n \rightarrow {}^{9}Be + \gamma$ and per unit volume?? $|a+b+c \rightarrow d+\gamma|$ Radiative capture process 2θ $\left(\frac{1}{m_c}\right)^{3/2} \frac{2\pi}{(K_B T)^3} e^{-\frac{Q}{K_B T}} \int_{|Q|}^{\infty} E^2 \sigma_{\gamma,d}(E) e^{-\frac{E}{K_B T}} dE$ P_a (MeV) 2θ $\boxed{\mathcal{B}(E\lambda, I_i \to nI_f) = \sum |\langle nI_f, M_f| \mathcal{M}_{\mu}(E\lambda)|I_i, M_i \rangle|^2}$ -1.5 E_R (MeV)

E. Garrido, Weakly Bounds Systems in Atomic and Nuclear Physics, Seattle, 8th of March, 2010

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

$$
\begin{vmatrix}\n\alpha + \alpha + \alpha \rightarrow {}^{12}\text{C} + \gamma \\
\alpha + n + n \rightarrow {}^{6}\text{He} + \gamma \\
\alpha + \alpha + n \rightarrow {}^{9}\text{Be} + \gamma\n\end{vmatrix}
$$

What is the production rate for the different reactions in the stellar medium??

$$
P(\rho, T) = n_a n_b n_c R(T)
$$

$$
n_i = \rho N_A \frac{X_i}{A_i} \quad \begin{cases} \rho \to \text{mass density} \\ X_i = \frac{N_i m_i}{\sum_j N_j m_j}; Y_i = \frac{N_i}{\sum_j N_j} \end{cases}
$$

✔ Three-body radiative capture. The A=5 and A=8 gaps. \checkmark Three-body radiative capture. The A=5 and A=8 gaps.

Three-body Resonances and Applications in Nuclear Astrophysics

Three-body Resonances Three-body Resonances

✔ Hyperspherical Adiabatic Expansion Method $\boldsymbol{\nu}$ Hyperspherical Adiabatic Expansion Method

✗**Bound states:** Fast convergence in terms of adiabatic channels

✗**Scattering states:** Clean distinction between different open channels

Also fast convergence when combined with integral relations

✗**Resonances:** As for bound states when combined with complex scaling
Three-body Resonances and Applications in Nuclear Astrophysics

Three-body Resonances Three-body Resonances

- ✔ Hyperspherical Adiabatic Expansion Method $\boldsymbol{\nu}$ Hyperspherical Adiabatic Expansion Method
- Resonances and the Complex Scaling Method $\boldsymbol{\nu}$ Resonances and the Complex Scaling Method
- ✔ Decay of three-body resonances and Energy Distributions $\boldsymbol{\nu}$ Decay of three-body resonances and Energy Distributions

Applications in Nuclear Astrophysics Applications in Nuclear Astrophysics

- ✔ Three-body radiative capture $\boldsymbol{\nu}$ Three-body radiative capture
	- Sequential • Sequential
	- Direct • Direct
- $A 5$ and $A 6$ gaps $\boldsymbol{\checkmark}$ A=5 and A=8 gaps
	- $\frac{110\mu\mu\mu\mu\sigma}{120}$ • Production of ${}^{12}C, {}^{6}He, {}^{9}Be$

Three-body Resonances and Applications in Nuclear Astrophysics

THE END

R. de Diego and C. Romero Redondo, Madrid, Spain D.V. Fedorov and A.S. Jensen, Aarhus, Denmark

R. Álvarez Rodríguez, Madrid, Spain

A. Kievsky and M. Viviani, Pisa, Italy

P. Barletta, London, United Kingdom