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GFMC/DMC AFMC/SMMC

exp [ - H t ]
Evolve Particle Coordinates

MC for kinetic term

exp [ - H t ]
Evolve Single-Particle Orbitals 

exp[−T δτ ] = exp[− (R−R′)2

4 !2

2mδτ
]

MC for interaction

exp [ - V t] explicitly exp [ - T t ] explicitly

Some Applications:
Electron Gas
Liquid He
Light Nuclei
Cold Atoms

Some Applications:
Hubbard Model, ...
Shell Model of Nuclei
Cold Atoms



Quantum Monte Carlo methods

 ▪
 Stochastic Green function (SGF) algorithm : An algorithm designed for bosons that can simulate any complicated lattice Hamiltonian that does not have a sign problem. 

Used in combination with a directed update scheme, this is a powerful tool.

 ▪
 Variational Monte Carlo : A good place to start; it is commonly used in many sorts of quantum problems.

 ▪
 Diffusion Monte Carlo : The most common high-accuracy method for electrons (that is, chemical problems), since it comes quite close to the exact ground-state energy 

fairly efficiently. Also used for simulating the quantum behavior of atoms, etc.

 ▪
 Path integral Monte Carlo : Finite-temperature technique mostly applied to bosons where temperature is very important, especially superfluid helium.

 ▪
 Auxiliary field Monte Carlo : Usually applied to lattice problems, although there has been recent work on applying it to electrons in chemical systems.

 ▪
 Reptation Monte Carlo : Recent zero-temperature method related to path integral Monte Carlo, with applications similar to diffusion Monte Carlo but with some different 

tradeoffs.

 ▪
 Gaussian quantum Monte Carlo

http://en.wikipedia.org/wiki/Quantum_Monte_Carlo

Implementations

 ▪
 ALPS

 ▪
 CASINO

 ▪
 CHAMP

 ▪
 Monte Python

 ▪
 PIMC++

 ▪
 pi-qmc

 ▪
 QMcBeaver

 ▪
 QmcMol

 ▪
 QMCPACK

 ▪
 Qumax

 ▪
 Qwalk

 ▪
 TurboRVB

 ▪
 Zori



(some) History:
MC calculation of the ground state 
of 3- and 4-body nuclei, M. H. Kalos, PR 128, 1797(1962).

Helium at Zero Temperature with Hard-Sphere and Other Forces, 
M. H. Kalos, D. Levesque, L. Verlet, PRA, 2178 (1974).

Ground State of the Electron Gas by a Stochastic Method,
D. M. Ceperley, B. J. Alder,  PRL 45, 565 (1980).

Path Integrals in the Theory of Condensed Helium
D. M. Ceperley, RMP 67, 279 (1995).

Low THigh T

Superfluid/Normal 
Transition



DMC Algorithm (shortest version)

 Start with a set of ‘configurations’
each configuration with coordinates R
(spin-isospin amplitudes αi), 
initially from VMC with probability
where           determined from trial state

 For each sample new R’ from exp[−(R′
i −Ri)2/(

4!2

2mi
∆τ)]

Calculate new amplitudes
and 

α′
j = exp[−V δτ ]jiαi

  Form new weight                sample 
configurations proportional to weights

|
∑

i

β!
i αi|

βi = αi

βj from trial state at R’
|
∑

i

β!
i αi|

 Measure observables & repeat



Real work (insight) in:

Good trial state or source:

Improved propagator exp [ - H t ] 

|Ψi
T 〉 = S

∏

i<j

Fij |Φi
T 〉

  Nuclear Physics:  Fij spin/isospin dependent;       shell-model `like’|Φi
T 〉

exp[−H∆τ ] ≈ S
∏ exp[−Hij∆τ ]

exp[−H0
ij∆τ ]

exp[−T δτ ]



Fixed Node
For fermions in a spin-independent potential, 
do not allow diffusion across surfaces where the
trial function is zero.

Variational upper bound, can optimize the fixed-node
surface.

Optimize at variational level, or try to optimize
by including parameters as diffusing elements in 
random walk.

Test results by relaxing nodal constraint.

Nitrogen Solid



Electron Gas

Cold Atoms
Ceperley and Alder, PRL 1980

Transient Estimation



Light Nuclear Spectra



Weakly Bound Helium Isotopes
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Helium Charge Radii

Mueller, et al,  PRL 2007
Norterhauser, et al, PRL 2009
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Heavy-Light Fermion Mixtures at Unitarity

Alexandros Gezerlis,1, 2 S. Gandolfi,3, 4 K. E. Schmidt,5 and J. Carlson1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

3S.I.S.S.A., International School of Advanced Studies, via Beirut 2/4, 34014 Trieste, Italy
4INFN, Sezione di Trieste, Trieste, Italy

5Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

We investigate pairing between unequal-mass fermions in the unitary regime for a mass ratio
corresponding to a 6Li - 40K mixture. We show that the fully paired superfluid state is nearly
independent of the mass ratio; the ground-state energy and the average light and heavy particle
excitation spectrum change very little. However, in the majority light system, the polarized super-
fluid is close to stability compared to a phase separated state. For a majority of heavy particles, we
find an energy minimum for a normal state with a ratio of ∼ 3:1 heavy to light particles. A slight
increase in attraction to kF a ≈ 2.5 renders the system unstable. A cold unpolarized system in a
harmonic trap at unitarity should phase separate into three regions: a normal state with a large
heavy to light ratio in the center, followed by a shell of fully paired superfluid in the middle and
either a polarized superfluid or a nearly fully polarized normal state in the exterior.

PACS numbers: 03.75.Ss, 05.30.Fk, 03.75.Hh, 67.85.-d

Superfluid pairing and the equation of state of cold
trapped atoms in the unitary regime have recently been
the subject of intense theoretical and experimental in-
vestigation [1, 2]. These systems are closely related to
strongly interacting fermions in other regimes, such as
neutron matter [3, 4] and dense quark matter [5], and
hence are useful as prototypes and benchmarks in many
areas of physics. At unitarity, all physical quantities are
simply given by dimensionless numbers times the rel-
evant free Fermi gas quantity. Theoretical predictions
based upon Quantum Monte Carlo (QMC) calculations
for these dimensionless numbers – including the ground-
state superfluid energy ξ = Esf/EFG ≈ 0.4 [6, 7, 8]
and pairing gap η = ∆/EF ≈ 0.5 [6, 8, 9], and the first-
order phase transition between an unpolarized superfluid
and a normal state at finite polarization or concentration
xc = n↓/n↑ ≈ 0.44 [10, 11, 12] – are in good agreement
with recent experiments [13, 14, 15].

An intriguing variation of this problem is pairing be-
tween particles with different masses, which is within ex-
perimental reach [16, 17] and has already sparked consid-
erable theoretical interest [18, 19, 20, 21, 22, 23, 24, 25].
The most promising candidate is a mixture of 6Li and
40K s-wave Feshbach resonances, for which the mass ra-
tio r ≈ 6.5. A heavy-light fermion mixture may be more
likely to exhibit exotic phases, like LOFF [26], while for
higher mass ratios or more attractive interactions Efimov
states are expected to appear.

We consider an interaction of the form:

H =
∑

i=1,nl

−!2

2ml
∇

2
i +

∑

j=1,nh

−!2

2mh
∇

2
j +

∑

i,j

V (rij), (1)

where h denotes a heavy particle and l denotes a
light particle, with a mass ratio r = mh/ml, and a
zero-range interaction between light and heavy particles

with strength tuned to infinite scattering length in the
unequal-mass pair. Mean-field BCS theory for unequal-
mass pairing predicts a simple scaling of the equation of
state in terms of the reduced mass µ = mlmh/(ml +mh).
If we define the average chemical potential by µ̄ = (µh +
µl)/2 then µ̄ and the pairing gap ∆ remain unchanged

in units of the reduced Fermi energy Eµ
F = !

2

4µ(3π2ρ)2/3 ,
where ρ is the total particle density.

The heavy and light excitation energies naturally de-
pend upon the masses mh and ml individually. The en-
ergies of the heavy and light excitations are:

Eh(l)(k) =
ξh(l)(k) − ξl(h)(k)

2
+

√

(

ξh(k) + ξl(k)

2

)2

+ ∆2(k), (2)

where ξh(l)(k) = !
2k2

2mh(l)
− µh(l). Even so, the average of

Eh(k) and El(k) depends only upon the reduced mass µ,
as does the gap ∆(k).

There is no a priori reason to believe that the BCS
results should be accurate. We have performed QMC
calculations of the homogeneous superfluid phase, exam-
ining the quasi-particle dispersion as a function of the
momentum. The methods are those employed previously
in the equal-mass case [8, 9], using a Pöschl-Teller poten-
tial with an effective range of r0/12, where 4/3πr3

0 = 1/ρ.
The simulations provide the fixed-node upper bound to
the energy, while the superfluid and normal trial wave
functions are of the same form as that used previously.

For a mass ratio of 6.5, we obtain a ground-state en-
ergy ξ(r = 6.5) = 0.390(5), slightly lower than the ξ(r =
1) = 0.41(1) obtained for the same interaction with equal
masses. The latter extrapolates to ξ(r = 1) = 0.40(1) at
zero effective range; we have verified that similar small
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Superfluid Fermi Gases with Large Scattering Length

J. Carlson,1 S-Y Chang,2 V. R. Pandharipande,2 and K. E. Schmidt2, ∗

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.
2 Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801, U.S.A.

(Dated: February 2, 2008)

We report quantum Monte Carlo calculations of superfluid Fermi gases with short-range two-body
attractive interactions with infinite scattering length. The energy of such gases is estimated to be
(0.44 ± 0.01) times that of the noninteracting gas, and their pairing gap is approximately twice the
energy per particle. PACS: 03.75.Fi, 05.30.Fk, 21.65.+F

In dilute Fermi gases the pair interactions have a range
much smaller than the interparticle spacing. However,
when the two-particle scattering length is large, these
short range interactions can modify the gas properties
significantly. A well known example is low density neu-
tron matter which may occur in the inner crust of neu-
tron stars [1]. The two-neutron interaction has a range
of ∼ 2 fm, but the scattering length is large, −18 fm,
so that even at densities as small as one percent of the
nuclear density the parameter akF has magnitude much
larger than one. Bertsch proposed in 1998 that solution
of the idealized problem of a dilute Fermi gas in the limit
akF → −∞ could give useful insights into the properties
of low density neutron gas.

Cold dilute gases of 6Li atoms have been produced in
atom traps. The interaction between these atoms can
be tuned using a known Feshbach resonance; and the
estimated value of akF in the recent experiment [2] is
∼ −7.4. As the interaction strength is increased beyond
that for a = −∞, we get bosonic two-fermion bound
states. In this sense a dilute Fermi gas with large a is in
between weak coupling BCS superfluid and dilute Bose
gases with Bose-Einstein condensation [3]. Attempts to
produce Bose gases in the limit, a/r0 → ∞ using Fesh-
bach resonances [4, 5], are in progress, and their energy
has been recently estimated using variational methods
[6].

In the a → −∞ limit k2
F /m is the only energy scale,

and the ground state energy of the interacting dilute
Fermi gas is proportional to the noninteracting Fermi gas
energy:

E0(ρ) = ξ EFG = ξ
3

10

k2
F

m
. (1)

Baker [7] and Heiselberg [8] have attempted to obtain the
value of the constant ξ from expansions of the Fermi gas
energy in powers of akF . Heiselberg obtained ξ = 0.326,
while Baker’s values are ξ = 0.326 and 0.568.

Fermi gases with attractive pair interaction become su-
perfluid at low temperature. The BCS expressions in
terms of the scattering length were given by Leggett [9],
and they were used to study the properties of superfluid
dilute Fermi gases, as a function of akF , by Engelbrecht,
Randeria and Sá de Melo [10]. For akF = −∞ they

obtain an upperbound, ξ = 0.59, using the BCS wave
function. These gases are also estimated to have large
gaps comparable to the ground state energy per particle.

Here we report studies of Fermi gases with quantum
Monte Carlo methods using the model potential:

v(r) = −
2

m

µ2

cosh2(µr)
. (2)

The zero energy solution of the two-body Schrödinger
equation with this potential is tanh(µr)/r and corre-
sponds to a = −∞. The effective range is 2/µ, and in
order to ensure that the gas is dilute we use µr0 > 10,
where r0 is the unit radius; ρr3

0 = 3/4π. All the results
presented here are for µr0 = 12; however some of the
calculations were repeated for µr0 = 24 and the results
extrapolated to 1/µ → 0.

We have carried out fixed node Green’s function Monte
Carlo [11] (FN-GFMC) calculations with trial wave func-
tions of the form:

ΨV (R) =
∏

i,j′

f(rij′ )Φ(R) , (3)

where i, j, ... and i′, j′, ... label spin up and down parti-
cles, and the configuration vector R gives the positions of
all the particles. Only the antiparallel spin pairs are cor-
related in this ΨV with the Jastrow function f(rij′ ). The
parallel spin pairs do not feel the short range interaction
due to Pauli exclusion.

In FN-GFMC the ΨV is evolved in imaginary time with
the operator e−Hτ while keeping its nodes fixed to avoid
the fermion sign problem. In the limit τ → ∞ it yields
the lowest energy state with the nodes of ΨV . These
nodes, and hence the FN-GFMC energies, do not depend
upon the positive definite Jastrow function. Nevertheless
it is useful to reduce the variance of the FN-GFMC calcu-
lation. In the present work we use approximate solutions
of the two-body Schrödinger equation:

[

−
1

m
∇2 + v(r)

]

f(r < d) = λf(r < d) , (4)

with the boundary conditions f(r > d) = 1 and f ′(r =
d) = 0 [6]. The value of d is obtained by minimizing the
energy calculated using variational Monte Carlo. Note

strength, μ ⇔ scattering length & effective range

for cold atoms want μ ⇒ ∞,  range ⇒ 0

for heavy-light compare at same reduced mass

Hamiltonian for Cold Atoms



Gap and Effective Mass

Chapter 3

Mean-Field BCS Theory

In the theory of traditional superconductors it is conventional to discuss

phenomenological theories first, and then set them against the predictions

of the microscopic BCS theory. In this theory, pairs of particles form stable

bound states no matter how weak the attractive force, particles near the

Fermi surface pairing up in a coherent-state wave function. On the other

hand, in this work we are discussing the strong-coupling regime, where mean-

field BCS theory is not expected to hold and the concept itself of a Fermi

surface is mootable. Our interest in BCS theory is not so much historical, as

practical: it is relatively easy to write down and solve the BCS gap equation,

despite the fact that we do not expect it to provide quantitatively accurate

results. This means that we can use the mean-field results as a point of

reference, with which we can compare more accurate methods. Also, precisely

because it is easy to implement both in the continuum and in a periodic finite

volume, it will allow us to study finite-size effects in the case of neutron

matter, where the interaction is characterized by an effective range that is

not negligible.

3.1 BCS Gap Equation

We wish to describe an unpolarized collection of particles (half of which

are spin-up and the other half spin-down) and include the instability of the

normal state in the presence of attractive interactions. In the well-known

BCS formulation of this problem (see e.g. Refs. [83, 84]), the wave function

is written as:

|ψBCS〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓)|0〉 , (3.1)

where u2
k + v2

k = 1, and we assume that uk and vk are real. For future

reference, let us also introduce the pair function φ(r) which can be written

30
Add a particle of momentum k

particle projected BCS state

Ψ0 = ΨBCS =
∏

k

[vk/uk] a†↑(k)a†↓(−k) |0〉

Ψ1(k′) = a†↑(k
′)ΨBCS = a†↑(k

′)
∏

k

[vk/uk] a†↑(k)a†↓(−k) |0〉

`Easy’ to add excitation with different quantum numbers
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Experiments at Unitarity: #      =   #
Cloud Size and Sound Velocity  

Cloud Size
vs E (B)

c0

vf
=

ξ1/4

√
(5)

ξ = 0.435(15)

Joseph, et al., PRL 2007
Sound Propagation

scaling verified as ρ 
varied by 30!

ξ = 0.39(02)

Energy vs. 
Entropy

ξ = 0.41(02)

Luo and Thomas, JLTP,   2009



Normal State at Large P

One particle in a sea of non-interacting fermions

Binding ~ 0.6 Ef
Effective mass ~ 1

Calculate systems w/ total momentum k, extract E(k)
k=0 gives Binding,  curvature gives effective mass

rms displacement of the impurity
measures effective mass



Unequal Masses

We concentrate on Mh/Ml = 6.5
approximate K/Li ratio
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Heavy-Light Fermion Mixtures at Unitarity
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2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
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We investigate pairing between unequal-mass fermions in the unitary regime for a mass ratio
corresponding to a 6Li - 40K mixture. We show that the fully paired superfluid state is nearly
independent of the mass ratio; the ground-state energy and the average light and heavy particle
excitation spectrum change very little. However, in the majority light system, the polarized super-
fluid is close to stability compared to a phase separated state. For a majority of heavy particles, we
find an energy minimum for a normal state with a ratio of ∼ 3:1 heavy to light particles. A slight
increase in attraction to kF a ≈ 2.5 renders the system unstable. A cold unpolarized system in a
harmonic trap at unitarity should phase separate into three regions: a normal state with a large
heavy to light ratio in the center, followed by a shell of fully paired superfluid in the middle and
either a polarized superfluid or a nearly fully polarized normal state in the exterior.

PACS numbers: 03.75.Ss, 05.30.Fk, 03.75.Hh, 67.85.-d

Superfluid pairing and the equation of state of cold
trapped atoms in the unitary regime have recently been
the subject of intense theoretical and experimental in-
vestigation [1, 2]. These systems are closely related to
strongly interacting fermions in other regimes, such as
neutron matter [3, 4] and dense quark matter [5], and
hence are useful as prototypes and benchmarks in many
areas of physics. At unitarity, all physical quantities are
simply given by dimensionless numbers times the rel-
evant free Fermi gas quantity. Theoretical predictions
based upon Quantum Monte Carlo (QMC) calculations
for these dimensionless numbers – including the ground-
state superfluid energy ξ = Esf/EFG ≈ 0.4 [6, 7, 8]
and pairing gap η = ∆/EF ≈ 0.5 [6, 8, 9], and the first-
order phase transition between an unpolarized superfluid
and a normal state at finite polarization or concentration
xc = n↓/n↑ ≈ 0.44 [10, 11, 12] – are in good agreement
with recent experiments [13, 14, 15].

An intriguing variation of this problem is pairing be-
tween particles with different masses, which is within ex-
perimental reach [16, 17] and has already sparked consid-
erable theoretical interest [18, 19, 20, 21, 22, 23, 24, 25].
The most promising candidate is a mixture of 6Li and
40K s-wave Feshbach resonances, for which the mass ra-
tio r ≈ 6.5. A heavy-light fermion mixture may be more
likely to exhibit exotic phases, like LOFF [26], while for
higher mass ratios or more attractive interactions Efimov
states are expected to appear.

We consider an interaction of the form:

H =
∑

i=1,nl

−!2

2ml
∇

2
i +

∑

j=1,nh

−!2

2mh
∇

2
j +

∑

i,j

V (rij), (1)

where h denotes a heavy particle and l denotes a
light particle, with a mass ratio r = mh/ml, and a
zero-range interaction between light and heavy particles

with strength tuned to infinite scattering length in the
unequal-mass pair. Mean-field BCS theory for unequal-
mass pairing predicts a simple scaling of the equation of
state in terms of the reduced mass µ = mlmh/(ml +mh).
If we define the average chemical potential by µ̄ = (µh +
µl)/2 then µ̄ and the pairing gap ∆ remain unchanged

in units of the reduced Fermi energy Eµ
F = !

2

4µ(3π2ρ)2/3 ,
where ρ is the total particle density.

The heavy and light excitation energies naturally de-
pend upon the masses mh and ml individually. The en-
ergies of the heavy and light excitations are:

Eh(l)(k) =
ξh(l)(k) − ξl(h)(k)

2
+

√

(

ξh(k) + ξl(k)

2

)2

+ ∆2(k), (2)

where ξh(l)(k) = !
2k2

2mh(l)
− µh(l). Even so, the average of

Eh(k) and El(k) depends only upon the reduced mass µ,
as does the gap ∆(k).

There is no a priori reason to believe that the BCS
results should be accurate. We have performed QMC
calculations of the homogeneous superfluid phase, exam-
ining the quasi-particle dispersion as a function of the
momentum. The methods are those employed previously
in the equal-mass case [8, 9], using a Pöschl-Teller poten-
tial with an effective range of r0/12, where 4/3πr3

0 = 1/ρ.
The simulations provide the fixed-node upper bound to
the energy, while the superfluid and normal trial wave
functions are of the same form as that used previously.

For a mass ratio of 6.5, we obtain a ground-state en-
ergy ξ(r = 6.5) = 0.390(5), slightly lower than the ξ(r =
1) = 0.41(1) obtained for the same interaction with equal
masses. The latter extrapolates to ξ(r = 1) = 0.40(1) at
zero effective range; we have verified that similar small

BCS Equations unchanged for constant reduced mass
Individual Quasiparticle Excitation Energies:

ξ Unchanged
Average Quasiparticle Energy Unchanged



Heavy-Light Fermions at Unitarity

M/m = 6.5

Understand structure
for Nh >> Nl 

Gezerlis, Gandolfi, Schmidt, JC, PRL 2009



Larger Mass Ratios 

For 2H, 1L get collapse and Efimov States at M/m > 13.6

For M/m = 8.62-13.6 can get weakly interacting
gas of dimers and trimers

3

of trimers with three possible polarizations (the trimer
has l = 1). Its energy density is therefore

Etrimer

V
= c

n5/3

l

32/3(2M + m)
, (11)

where c = 3
10

(6π2)2/3!2 and nl is the density of the light
fermions. On the other hand, if one turns off the inter-
action, the system becomes a Fermi gas of light fermions
with density nl plus a Fermi gas of heavy fermions with
density nh = 2nl. The energy density of this gas is

Efree

V
= c

n5/3

l

m
+ c

(2nl)5/3

M
. (12)

Taking the ratio we find

Etrimer

Efree

=
u

32/3(u + 25/3)(2u + 1)
≈ 1.93 × 10−2. (13)

It is clear that the trimer gas energy is not the lowest
ground state energy and hence is only an upper bound
on the latter. For example, a trimer with energy near the
Fermi energy can decay into its constituents (two heavy
and one light fermions) since the binding energy is zero,
and this decay can happen until chemical equilibrium
is reached. The true ground state is therefore a mix-
ture of the trimer gas with a gas of constituent fermions.
Because of the strong interactions between constituent
fermions, we do not have an exact formula for the ground
state energy. The upper bound, on the other hand, im-
plies that the system is very strongly interacting: the
ground state energy is less than 2% of the energy of the
noninteracting system: ξ

(

u → umin, 1
3

)

< 1.93 × 10−2.
This can be contrasted with the case of symmetric uni-
tary Fermi gas with equal masses, where ξ ≈ 0.4.

For a general value of x, we can put an upper bound on
ξ by considering the state where the maximal number of
trimers is bound and form a trimer Fermi gas, while the
remainder (heavy fermions for x < 1

3
and light fermions

for x > 1
3
) form another free Fermi gas. The resulting

bound is plotted in Fig. 1. One sees that the variational
bound is lowest when x is close to 1/3. From the point of
view of the ground state energy, the 2:1 mixture of heavy
and light fermions is therefore the most interesting.

Exact relationships near u = 8.62 and 13.6.— For mass
ratios u between 8.62 and 13.6, therefore, there exist two
scale invariant regimes, which give rise to unitary Fermi
gases with and without three-body resonance. We now
show that near the lower critical value umin there exists
an exact relationship between the pressures of a unitary
Fermi gas with three-body resonance, P , and a unitary
Fermi gas without three-body resonance, P0, at the same
chemical potentials of light and heavy fermions, µh and
µl. Namely,

lim
u→umin

[P (µl, µh) − P0(µl, µh)]

=
[2(2M + m)]3/2

5π2!3
(2µh + µl)

5/2. (14)
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FIG. 1: The variational bound on ξ as a function of the abun-
dance of light fermions x at M/m = 8.62 + ε.

We emphasize here that we have in mind the limit when
for each mass ratio u we take the zero-range limit, com-
pute the pressures P and P0, and then take the limit
u → umin. In general the limit u → umin and the zero-
range limit do not commute.

The right-hand side of Eq. (14) is the pressure of an
ideal Fermi gas of trimers, with l = 1, at chemical poten-
tial 2µh+µl. Physically, Eq. (14) means that at u → umin

the unitary Fermi gas with three-body resonance con-
sists of two parts: a trimer gas and a Fermi gas of the
fermionic constituents outside the trimers. These two
parts interact weakly with each other, but are in chemi-
cal equilibrium.

When x = 1
3
, there is another simple relationship be-

tween the ground state energies with and without three-
body resonance. ξ of the Fermi gas with three-body reso-
nance is determined by the analogously defined quantity
of the unitary Fermi gas without three-body resonance
ξ0 via

ξ−3/2 = ξ−3/2

0 + 374. (x = 1
3
, u → umin). (15)

We have argued above that the trimers decouple at
umin. What is less trivial is that the fermions outside
the trimers contribute the same pressure as a Fermi gas
without three-body resonance. This seems strange: the
three-body wave functions satisfy different boundary con-
ditions at small distances (Rγ− vs. Rγ+) in the two cases.
To see that it is the case, consider the three-body wave
function of three particles at some positive energy. The
radial part of the Schrödinger equation reads

∂2ψ

∂R2
+

5

R

∂ψ

∂R
−

γ(γ + 4)

R2
ψ = −k2ψ(R). (16)

This equation has two solutions:

ψ(R) ∼ R−2J±ν(kR), ν = |γ + 2|, (17)

where J−ν corresponds to the case with three-body res-
onance, and Jν to that without the resonance. The limit

Nishida, Son, Tan 2008



Born Oppenheimer Treatment

Nishida, 2009

!single = −
kF

2

2m

akF + !1 + "akF#2$!"/2 + arctan"akF#−1$
""akF#2 .

"15#

The energy reduction with 2!single subtracted is regarded as
the interaction energy of the two heavy fermions:

V"%r%# & E"%r%# − E"%r% → ## = $E"%r%# − 2!single. "16#

V"%r%# represents the effective interaction between two heavy
fermions induced by the interaction with the Fermi sea of
light fermions. We note that the chemical potential of light
fermions !l&

kF
2

2m is fixed here instead of their particle num-
ber.

It is convenient to measure the interaction energy V"r# in
units of the Fermi energy of light fermions and introduce a
dimensionless function v"kFr# as

V"r# &
kF

2

2m
v"kFr# . "17#

v"kFr# is a function of the separation between the heavy fer-
mions kFr and also the s-wave scattering length akF. v"kFr#
for three typical values of "akF#−1=−5,0 ,5 are plotted in Fig.
1. One can see the smooth evolution of the effective interac-
tion between the two heavy fermions as a function of "akF#−1

in Fig. 2. In the BCS regime "akF#−1%−1, the effective in-
teraction is attractive at r% %a% and has a tiny oscillatory be-
havior at r& %a%. This oscillatory behavior grows toward the
unitarity limit "akF#−1'0 and makes a small hump at r
(kF

−1 "see the left panel of Fig. 2#. This hump further grows
in the BEC regime "akF#−1&1 and eventually develops a
repulsive core at r(a "see the right panel of Fig. 2#.

It is worthwhile to compare our nonperturbative result
"16# with the perturbative calculation of the effective inter-
action in the BCS limit a→−0. In the BCS limit %a%'r, kF

−1,
we have ()→0 and the phase shift

*)"k# →
%a%
r

!kr ) sin"kr#$ ) ) %a%
r
*2

cos"kr#!kr ) sin"kr#$

+ O"%a%3# . "18#

Thus we can find the interaction energy to be

v"kFr# → "%a%kF#22kFr cos"2kFr# − sin"2kFr#
2""kFr#4 + O"%a%3# ,

"19#

which has the same form as the Ruderman-Kittel-Kasuya-
Yosida interaction between magnetic impurities in a Fermi
liquid !21$. Accordingly the Fourier transform of the effec-
tive interaction V"%r%# in the BCS limit becomes
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FIG. 1. "Color online# Interaction energy of two heavy fermions v"kFr# as a function of their separation kFr. Three different curves
correspond to the BCS regime "akF#−1=−5 "dashed curve#, unitarity limit "akF#−1=0 "solid curve#, and BEC regime "akF#−1=5 "dotted
curve#. The right panel is a magnification of the left panel.
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FIG. 2. "Color online# Evolution of the interaction energy v"kFr# as a function of the inverse s-wave scattering length "akF#−1. Left panel:
"akF#−1 is varied from −2 "curve with the smallest amplitude# to 0 "largest amplitude#. The tiny oscillatory behavior existing in the BCS
regime grows toward the unitarity limit and makes a small hump at r(kF

−1. Right panel: "akF#−1 is varied from 0 "curve with the smallest
height# to 2 "largest height#. The hump further grows in the BEC regime and develops a repulsive core at r(a.

CASIMIR INTERACTION AMONG HEAVY FERMIONS IN… PHYSICAL REVIEW A 79, 013629 "2009#

013629-3

BCS - dashed
Unitary - solid
BEC - dotted

In a gas of light particles, heavy particles are attractive
           at moderate distances
Three and four heavy centers at fixed pair distances

approximately equal to sum of pair interactions



Binding of One Heavy or One Light

B(H) = 0.36 EF(L)

B(L) = 2.3 EF(H)

effective mass ~1.0

effective mass ~ 1.3

Agreement w/ previous calculations
R. Combescot et al., Phys. Rev. Lett. 98, 180402 (2007)



2 Heavy Fermions - 1 Light
Collapse at M/m = 13.6
Efimov, NPA 210, 157

Assume nodes independent of light particle
Nh = 2
Nh = 3
Nh = 4

r12 × r13 · ẑ

r12 · ẑ

r12 × r13 · r1;234

Nodes when ‘volume’ goes to zero

Collapse:  2H 1L  M/m = 13.6
               3H 1L  M/m ~ 10.5
               4H 1L  M/m ~ 9.5

Efimov Physics in Few-Body Heavy Light Systems

Gandolfi & JC , 2010



Low Energy Scattering: Explicit States

state with a node at the surface) decreases as R0 increases,
so we choose R0 ! 9 fm.

Second, the GFMC energy also depends somewhat on
the input !T . We find it important to adjust pair correla-
tions between particles in different clusters (between the n
and constituents of the ! in this case) so that the factoriza-
tion in Eq. (1) is enforced at large cluster separation [14].
We also adjust a parameter in !T that corresponds to k
until it matches the final GFMC energy; this typically takes
one or two iterations of the VMC and GFMC calculations
to obtain a self-consistent result.

Finally, in all of our A > 4 GFMC calculations, we use a
path constraint [1] on the GFMC walk to mitigate the
Fermion sign problem; we compute energy samples only
after releasing the constraint for some number of steps to
avoid biasing the results. We find that stable results in our
scattering calculations require the use of 80 unconstrained
steps rather than the usual 20 to 40. However, the "" step
size is unchanged.

In Fig. 1 we present phase shifts for all channels, com-
puted with three different interaction models. In each case
the AV18 potential is used as the two-nucleon interaction;
in the second (third) case the UIX (IL2) three-nucleon
potential is added. We also show partial-wave total cross
sections for the AV18" IL2 case in Fig. 2. Each point in
these figures is equivalent in computer time to a single
bound-state calculation of comparable statistical error.
Because of the narrow resonance in the 3=2# channel, #

varies rapidly with E so that the highest-energy state we
can reach—the first with a node at R0—lies lower than in
the other two channels. Future calculations extending to
energies beyond this maximum-energy state should be
analogous to previous calculations of multiple bound states
with the same quantum numbers [15].

In the figures, we compare our results with those from a
multichannel R-matrix analysis of the 5He system [16] that
characterizes the measured scattering data very well
($2=d:o:f: is 1.6). Some of the resonance parameters
from that analysis are given in Refs. [17,18]. Because there
are more than 2600 data points in the analysis, the uncer-
tainties in the R-matrix phase shifts are likely to be much
smaller than the errors in the GFMC calculations.

We have made rational polynomial fits to tan%JL=k2L"1,
converted them to rational polynomials for the S-matrix,
and used these to find the poles of S. These fits are shown
as dashed curves in the figures. For each of the two p-wave
states, we find just one pole that is stable as the degrees of
the polynomials are changed; we identify these as the
resonance poles. For 3=2# the poles are at 1:19–0:77i,
1:39–0:75i, and 0:83–0:35i MeV for AV18 alone, AV18"
UIX, and AV18" IL2, respectively, compared with
0:798–0:324i MeV from analysis of the data [18]. The
corresponding 1=2# values are 1:7–2:2i, 2:4–2:5i, and
2:3–2:6i MeV, compared with 2:07–2:79i MeV. The
1=2" fits yield no stable pole, in agreement with the lack
of a resonance in this channel and with the R-matrix
analysis. All pole locations have an error of not more
than 3 in the last decimal place.

It is well known that realistic two-nucleon interactions
alone provide insufficient spin-orbit splitting in light nuclei
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FIG. 1 (color online). Phase shifts for n-! scattering. Filled
symbols (with statistical errors smaller than the symbols) are
GFMC results; dashed curves are fits described in the text; and
solid curves are from an R-matrix fit to data [16].
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FIG. 2 (color online). Partial-wave cross sections from the
AV18" IL2 Hamiltonian compared to R-matrix analysis.
Stars show the pole energies in 3=2# scattering for the
R-matrix fit and for AV18" IL2, with the bars indicating the
imaginary part.

PRL 99, 022502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JULY 2007

022502-3
Nollett, et al, PRL 2007

Enforce Logarithmic Derivative at R

Multiple Solutions at same E
for multi-channel scattering.

Also useful for 
Asymptotic constants

Viviani talk, Nollett, ...



Shorter-Range Correlations required for Parity Violation
PV Interaction: Pion exchange plus short-range

• Analogous to optical rotation in an
“handed” medium.

• Transversely-polarized neutrons
corkscrew due to the NN weak
interaction

• PV Spin Angle is independent of
incident neutron energy in cold neutron
regime, dφPV/dx ~ 10-6 rad/m based on
dimensional analysis

• dφPC/dx (due to B field) can be much
larger than dφPV/dx, and is vn dependent

( ) ( )kfff PVPC

vv
⋅+= σ0

A Parity-Violating Observable:
 Neutron Spin Rotation

f

( )−++=↑
2
1

i

( )zeze PVPCPVPC ii −+ −−+− )()(

2
1 φφφφ

φPV = ϕ+ −ϕ− = 2πlρ fPV

Refractive index dependent
on neutron helicity

 
φPV

vn, 4He( ) = − 0.97 fπ + 0.22hω0 − 0.22hω1 + 0.32hρ0 − 0.11hρ1 − 0.02 ′hρ
1( ) rad /m

Dmitriev et al. Phys Lett 125 1 (1983)

φPV(n
4He) = (1.2λs

nn + 0.6λs
np +1.3λt − 2.7ρt ) mn

Zhu et al.  Nucl. Phys. A 748 435-498 (2005)

π

Also:  np→dγ, ...

+ ...

from Mike Snow



For complicated case (multi-particle breakup),
we can enforce simple (unphysical) boundary 
conditions. (for example 11Li).

What information does this contain about
the S-matrix?



Static Response

Vext(r) = 2vqcos(q · r)

nq = χ(q)vq + C3vq3

Ev = E0 + χ(q)v2
q + C4v

4
q

Moroni, et al PRL 1992
Liquid He-4 
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Neutron Drops in an External Well (HO)

Preliminary

Carlson, Pieper, Gandolfi, preliminary 

Implies significantly more repulsive 
isovector gradient terms



Neutron Drop Densities

NEUTRON DROPS – SINGLE-NEUTRON DENSITY DISTRIBUTIONS

Oscillator well + AV18 + UIX

!ω = 5&10 MeV
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Inclusive Scattering at Higher Energy
- Imaginary Time Response

S(k, ω) =
∑

f

〈0|ρ†(k)|f >< f |ρ(k)|0〉δ(Ef − E0 − ω)

Linear Response

for example for electron scattering longitudinal response

ρ(k) =
∑

i

exp(ik · r) [1 + τz(i)]/2

Can really only calculate imaginary time response

E(k, τ) =
∫

dω S(k, τ) exp[−ωτ ]

E(k, τ) = 〈0| ρ†(k) exp[−Hτ ] ρ(k) |0〉

Dynamic Response



300 MeV/c

400 MeV/c

Longitudinal Respone

Transverse response shows
   importance of 2-body currents
Maximum Entropy Techniques used to reconstruct S(k,w)
Would be very interesting to do neutrino scattering on 12C



Major Challenges

More complete scattering (more channels), breakup
Bigger Nuclei / Nuclear - Neutron Matter
More General Interactions
Improved/ More Response Calculations


