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HH Weakly Bound

Nuclear force models

Nucleon-nucleon interaction

Background

The underling theory for nuclear physics
is QCD.

At low energy QCD is non-perturbative
−→ lattice.

Currently no reliable NN interactions
can be derived from lattice calculations
(this might change in the near future).

Nuclear interaction is based on
phenomenology.

Effective Field Theory provides a
consistent way to derive the nuclear
interaction.



HH Weakly Bound

Nuclear force models

Nucleon-nucleon interaction

Background

The underling theory for nuclear physics
is QCD.

At low energy QCD is non-perturbative
−→ lattice.

Currently no reliable NN interactions
can be derived from lattice calculations
(this might change in the near future).

Nuclear interaction is based on
phenomenology.

Effective Field Theory provides a
consistent way to derive the nuclear
interaction.



HH Weakly Bound

Nuclear force models

Nucleon-nucleon interaction

Background

The underling theory for nuclear physics
is QCD.

At low energy QCD is non-perturbative
−→ lattice.

Currently no reliable NN interactions
can be derived from lattice calculations
(this might change in the near future).

Nuclear interaction is based on
phenomenology.

Effective Field Theory provides a
consistent way to derive the nuclear
interaction.



HH Weakly Bound

Nuclear force models

Nucleon-nucleon interaction

Background

The underling theory for nuclear physics
is QCD.

At low energy QCD is non-perturbative
−→ lattice.

Currently no reliable NN interactions
can be derived from lattice calculations
(this might change in the near future).

Nuclear interaction is based on
phenomenology.

Effective Field Theory provides a
consistent way to derive the nuclear
interaction.



HH Weakly Bound

Nuclear force models

Nucleon-nucleon interaction

Background

The underling theory for nuclear physics
is QCD.

At low energy QCD is non-perturbative
−→ lattice.

Currently no reliable NN interactions
can be derived from lattice calculations
(this might change in the near future).

Nuclear interaction is based on
phenomenology.

Effective Field Theory provides a
consistent way to derive the nuclear
interaction.



HH Weakly Bound

Nuclear force models

Nucleon-nucleon interaction

Characteristics of realistic NN
forces

Long range - One Pion
Exchange, Yukawa potential.

Short range - phenomenology.

Reproduce NN phase shifts up to
pion threshold.

The 2-body NN force underbinds
3He, 4He,....

A 3-body, NNN, force must be
supplemented.

The force can be local or mildly
non-local.

Non-central.

EFT potentials are naturally
formulated in momentum space.
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Nuclear force models

The EFT expansion

The V8 potential

VNN (rij) =
X

p

Vp(rij)Ôp(ij)

Central terms p = 1, . . . , 4

1, (σi · σj), (τi · τj), (σi · σj)(τi · τj)

LS coupling p = 5, 6

LS,LS(τi · τj)

Tensor force p = 7, 8

Sij , Sij(τi · τj)
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Hyperspherical Harmonics

Short History

The Hyperspherical Harmonics

1 The HH were introduced in 1935 by
Zernike and Brinkman.

2 They were reintroduced 25 years later by
Delves and Smith.

3 In the 1970 Reynal and Revai derived
the HH transformation coefficients.

4 and in 1972 Kil’dushov derives the HH
recoupling coefficients.

5 All the rest of us ...

x1 = ρ cos(α) cos(β) cos(δ)
x2 = ρ cos(α) cos(β) sin(δ)
x3 = ρ cos(α) sin(β)
x4 = ρ sin(α) cos(γ)
x5 = ρ sin(α) sin(γ)

The “Tree” diagram
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Hyperspherical Harmonics

Construction

The Hyperspherical Harmonics

1 Hyperspherical coordinates
x1, x2, x3, ...xD −→ ρ =

pP
x2

i ,Ω

2 In hyperspherical coordinates

∆ =
∂2

∂ρ2
+
D − 1

ρ

∂

∂ρ
− K̂2

ρ2

3 ρKY[K](Ω) is a Harmonic polynomial.

4 The HH are eigenstates of K̂2

K̂2Y(Ω) = K(K +D − 2)Y(Ω)

5 Using the tree structure one can easily
construct HH starting from the leafs and
uniting branches.

6 Each junction is associated with a
quantum number.

7 Each junction adds a factor
N cosKR(θ) sinKL(θ)P

(αR,αL)

(K−KR−KL)/2(cos(2θ))

x1 = ρ cos(α) cos(β) cos(δ)
x2 = ρ cos(α) cos(β) sin(δ)
x3 = ρ cos(α) sin(β)
x4 = ρ sin(α) cos(γ)
x5 = ρ sin(α) sin(γ)
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Hyperspherical Harmonics

Construction

Removing the center of mass - The Jacobi coordinates

The normalized equal mass Jacobi coordinates

η1 =

r
1

2

“
r2 − r1

”
η2 =

r
2

3

“
r3 −

1

2
(r2 + r3)

”
. . .

ηN−2 =

r
N − 2

N − 1

“
rN−2 −

1

N − 2
(r1 + r2 + · · ·+ rN−3)

”
ηN−1 =

r
N − 1

N

“
rN−1 −

1

N − 1
(r1 + r2 + · · ·+ rN−1)

”
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Hyperspherical Harmonics

Construction

The common “Tree”
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Y[K] =
ˆ NY

j=1

Y`j , mj (η̂j)
˜

×
ˆ NY

j=2

N `j ,Kj−1
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(sinαj)
`j (cosαj)

Kj−1P
(`j+ 1

2 ,Kj−1+ 3j−5
2 )
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Hyperspherical Harmonics

Construction

The Merits of the HH expansion

A complete set of basis functions.

X
[K]

Y∗[K](Ω
′)Y[K](Ω)

δ(ρ− ρ′)

ρD−1
=

NY
i=1

δ(ηi − η
′
i)

Easy transformation between configuration and momentum space

ei
P
ηjqj =

(2π)D/2

(Qρ)D/2−1

X
[K]

iKY∗[K](Ωq)Y[K](Ω)JK+D/2−1(Qρ)

Good asymptotics.

With appropriate choice of Jacobi coordinates and states clusterization
can be ”easily” treated.
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Hyperspherical Harmonics

Summary

The HH expansion in 4 steps

1. Remove the center of mass

~r1, ~r2, . . . ~rA −→ ~Rc.m., ~η1~η2 . . . ~ηA−1

2. Introduce hyperspherical coordinates

~η1~η2 . . . ~ηA−1 −→ ρ =
q
η2
1 + η2

2 + . . .+ η2
A−1,Ω

3. Expand the wave function using hyperspherical harmonics

Ψ(ρ,Ω) =
X

K≤Kmax

R[K](ρ)Y[K](Ω)

4. Solve the Schrödinger equation

H = −1

2

 
∂2

∂ρ2
+

3A− 4

ρ

∂

∂ρ
− K̂2

ρ2

!
+
X
i<j

Vij +
X

i<j<k

Vijk



HH Weakly Bound

Hyperspherical Harmonics

Summary

Not so fast !!!

There are two Major obstacles

1 The HH basis has no good
permutational symmetry.
(Anti)Symmetrization must be
enforced.

2 For some nuclear forces the
convergence of the HH expansion
is notoriously slow and must be
accelerated.



HH Weakly Bound

Symmetrization

Strategies

1 Apply the anti-symmetrization
to the HH basis

Â =
X

g∈SA

sign(g)ĝ

2 Do it recursively in steps

Â =
“
1− (1, A)− (2, A)− . . . (A− 1, A)

”
. . .

×
“
1− (1, 3)− (2, 3)

”
×
“
1− (1, 2)

”
3 Generate HH states from HO

Slater determinant.

det(HO) = e−
1
2 ρ2

ρKÂ
“
Y(Ω)X (si, ti)

”
4 Use the group of kinematic

rotations ηi −→ η′i = ĝηi

At a cost of A! operations.

At a cost of (A− 1)
operations.

Probably the only viable
way to extend HH
calculations to large A.
There are CM issues.
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Â =
“
1− (1, A)− (2, A)− . . . (A− 1, A)

”
. . .

×
“
1− (1, 3)− (2, 3)

”
×
“
1− (1, 2)

”
3 Generate HH states from HO

Slater determinant.

det(HO) = e−
1
2 ρ2

ρKÂ
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HH Weakly Bound

Symmetrization

(Anti) Symmetrization via Kinematic rotations

Using the group of kinematic rotations η′i = ĝηi, the HH symmetrization
can be carried out in two steps

HH −→ O(A−1)

and
O(A−1) −→ SA

In short we use the following group-subgroup chain

O3(A−1) ⊂ O3 ⊗O(A−1) ⊂ O3 ⊗ SA

K LM ΛA−1 LM YA

6-body system: A comparison between direct symmetrization and
symmetrization through the kinematical group O(A-1)

K HH → SA HH → O(A−1) O(A−1) → SA Ratio

2 198 56 108 1.21
4 11308 728 1528 5.01
6 516647 8771 16511 20.44
8 107 84700 127544 47.12
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can be carried out in two steps

HH −→ O(A−1)

and
O(A−1) −→ SA

In short we use the following group-subgroup chain

O3(A−1) ⊂ O3 ⊗O(A−1) ⊂ O3 ⊗ SA

K LM ΛA−1 LM YA

6-body system: A comparison between direct symmetrization and
symmetrization through the kinematical group O(A-1)

K HH → SA HH → O(A−1) O(A−1) → SA Ratio

2 198 56 108 1.21
4 11308 728 1528 5.01
6 516647 8771 16511 20.44
8 107 84700 127544 47.12



HH Weakly Bound

Convergence

Convergence - Statement of the problem
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For potentials with Coulomb type singularities the HH expansion of Ψ
converge as K−2

max

For Gaussian potentials Ψ converge as e−cKmax .

Actually. The problem is not the slow convergence rate but rather the
fast growth in the number of HH states.



HH Weakly Bound

Convergence

Strategies

Convergence
Strategies

1 Correlations: CHH, PHH, CFHHM ...

Ψ(ρ,Ω) = F (rij)
X

K≤Kmax

R[K](ρ)Y[K](Ω)

2 Basis Reduction: The potential basis (Fabre de-la Ripple), The Pisa
Group, Efros.
For a Bose-system this expansion may take the following form

Ψ(ρ,Ω) =
X
ij

X
[K]

R
(2)

[K](ρ)Y[K](Ωij) +
X
ij,kl

X
[K]

R
(2,2)

[K] (ρ)Y[K](Ωij,kl) + . . .

3 Effective interaction for the HH expansion. Replace the bare potential
by an effective one:

V (2) −→ V
(2)

eff

V (3) −→ V
(3)

eff



HH Weakly Bound

Convergence

The EIHH method

The Effective Interaction Hyperspherical Harmonics (EIHH)

The V
(2)

eff is derived from a ”2-body” Hamiltonian

H2(ρ) =
1

2m

K̂2

ρ2
+ V (~r =

√
2ρ sinαN · η̂N ) ,

The effective Hamiltonian is constructed through the Lee-Suzuki similarity
transformation

H2 eff (ρ) = U†(ρ)H2(ρ)U(ρ) ; U =
1 + ωp

P (1 + ω†ω)P

The operator ω = QωP is given by

〈q|i〉 =
X

α

〈q|ω|p〉〈p|i〉 ; H2|i〉 = Ei|i〉

Finally the effective interaction is given by

V2 eff (ρ) = H2 eff (ρ)− 1

2m

K̂2

ρ2
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Convergence

The EIHH method
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HH Weakly Bound

Convergence

Examples

4-body ground-state - Bare vs Effective



HH Weakly Bound

Convergence

Examples

4-body ground-state

Convergence of the EIHH method for 4He binding energy Eb [MeV] and

root mean square matter radius 〈r2〉
1
2 [fm] with AV18 and AV18+UIX

potentials.

AV18 AV18+UIX

Kmax Eb 〈r2〉
1
2 Eb 〈r2〉

1
2

6 25.312 1.506 26.23 1.456
8 25.000 1.509 27.63 1.428
10 24.443 1.520 27.861 1.428
12 24.492 1.518 28.261 1.427
14 24.350 1.518 28.324 1.428
16 24.315 1.518 28.397 1.430
18 24.273 1.518 28.396 1.431
20 24.268 1.518 28.418 1.432

FY [Nogga] 24.25 28.50
FY [Lazauskas] 24.22 1.516
HH [Viviani] 24.21 1.512 28.46 1.428

GFMC [Wiringa] 28.34 1.44
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HH Weakly Bound

Convergence

Examples

BENCHMARK for 4He ground state with AV8’ potential

H. Kamada et al., PRC 64 044001 (2001)

Method 〈T 〉 〈V 〉 Eb

p
〈r2〉

FY 102.39(5) -128.33(10) -25.94(5) 1.485(3)
CRCGV 102.25 -128.13 -25.90 1.482

SVM 102.35 -128.27 -25.92 1.486
HH 102.44 -128.34 -25.90(1) 1.483

GFMC 102.3(1.0) -128.25(1.0) -25.93(2) 1.490(5)
NCSM 103.35 -129.45 -25.80(20) 1.485
EIHH 100.8(9) -126.7(9) -25.944(10) 1.486



HH Weakly Bound

Convergence

Examples

The effective 3-body force

Convergence of 6Li ground state with the AV8’ NN potential

Kmax B.E V (2)eff B.E. (K
(3)
Q = 16) B.E. (K

(3)
Q = 20)

2 39.80 38.83
4 33.43 30.37 30.27
6 31.02 31.11 30.94
8 31.13 31.17 30.94
10 30.23 31.22 30.88

NCSM [Navratil] 30.30
GFMC [Pieper] 29.70(5)
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HH Weakly Bound

Convergence

Examples

EIHH for Non-local interactions

Local potential: V
(2)

eff (ρ) was derived using the fact that V is diagonal in
configuration space.
Non-local potential: (or in general) we can construct EI from a ”2-body”
Hamiltonian of the form:

〈n|H2|n〉 =
1

2m
K̂2〈n| 1

ρ2
|n〉+ 〈n|VA,A−1|n〉

In this case

〈n|V (2)
eff |n

′〉 = δn,n′〈n|H(2)
eff −

1

2m

K̂2

ρ2
|n〉+ (1− δn,n′)〈n|V (2)|n′〉
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HH Weakly Bound

Reactions

Reactions
The Lorentz Integral transform (LIT) method

The nuclear response function

R(ω) =

Z
dψf |〈ψi | Ô | ψf 〉|2δ(Ef − Ei − ω)

Transformed with Lorentzian kernel

L(σ) =

Z
dω

R(ω)

(ω − σ)2 + Γ2

=

Z
dψf

|〈ψf | Ô | ψi〉|2

(Ef − Ei − σ)2 + Γ2

The transform can be written as

L(σ) =

Z
dψf 〈ψi | Ô | ψf 〉

1

Ef − Ei − σ − iΓ

1

Ef − Ei − σ + iΓ
〈ψf | Ô | ψi〉

Or

L(σ) =

Z
dψf 〈ψi | Ô

1

H − Ei − σ − iΓ
| ψf 〉〈ψf |

1

H − Ei − σ + iΓ
Ô | ψi〉
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〈ψf | Ô | ψi〉

Or

L(σ) =

Z
dψf 〈ψi | Ô
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|〈ψf | Ô | ψi〉|2

(Ef − Ei − σ)2 + Γ2

The transform can be written as

L(σ) =

Z
dψf 〈ψi | Ô | ψf 〉
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〈ψf | Ô | ψi〉

Or

L(σ) =

Z
dψf 〈ψi | Ô
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HH Weakly Bound

Reactions

The Lorentz Integral transform (LIT) method
inclusive reaction

Using closure

L(σ) = 〈ψi | Ô
1

H − Ei − σ − iΓ

1

H − Ei − σ + iΓ
Ô | ψi〉 = 〈ψ̃ | ψ̃〉

| ψ̃〉 is the solution of the Schrödinger like equation

(H − E0 − σ + iΓ) | ψ̃〉 = Ô | ψ0〉.

Few comments

1 The LIT equation is just the Schrödinger equation with a source.

2 The only solution to the homogeneous equation is the trivial ψ̃ = 0
solution.

3 Since the source is localized ψ̃ −→ 0 as r −→∞.

4 The LIT equation can be solved using bound state methods !!!

5 R(ω) is obtained trough inversion of the transform, L(σ).

V. Efros, W. Leidemann, and G .Orlandini, PLB 238,

130 (1994).
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1

H − Ei − σ − iΓ

1

H − Ei − σ + iΓ
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solution.

3 Since the source is localized ψ̃ −→ 0 as r −→∞.

4 The LIT equation can be solved using bound state methods !!!

5 R(ω) is obtained trough inversion of the transform, L(σ).
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Ô | ψi〉 = 〈ψ̃ | ψ̃〉

| ψ̃〉 is the solution of the Schrödinger like equation

(H − E0 − σ + iΓ) | ψ̃〉 = Ô | ψ0〉.
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1

H − Ei − σ − iΓ

1

H − Ei − σ + iΓ
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method to study bound states and reactions.

3 Extending the HH method to study large systems A > 10 is an open
challenge.

Thanks, and enjoy the workshop !!!
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