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Introduction

In 2D nonlinear O(N) sigma models, partition functions have the same
property as SU(2N) gauge theories under the transformation g20 → −g20.

Zeros of partition functions in the complex β plane (Fisher’s zeros) for
2D nonlinear O(N) sigma model have similar features as 4D lattice gauge
theory. They will stay away from the physical (i.e. real) domain, this
indicates the absence of phase transition. (The confinement for lattice
gauge theory)

Both O(N) sigma models with N ≥ 3 and SU(N) gauge with N ≥ 2 has
the property of asymptotic freedom.
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Introduction

The lattice sites are denoted x and the scalar fields ϕ⃗x are N -dimensional
unit vectors. The partition function reads:

Z = C

∫ ∏
x

dNϕxδ(ϕ⃗x.ϕ⃗x − 1)e−(1/g20)E[{ϕ}] , (1)

with
E[{ϕ}] = −

∑
x,e

(ϕ⃗x.ϕ⃗x+e − 1) , (2)

with e running over the D positively oriented unit lattice vectors.
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Introduction

We insert the δ function as

δ(ϕ⃗x.ϕ⃗x − 1) =

∫ K+i∞

K−i∞
dM2

x

e
M2

x
2g20

(
1−

⇀
ϕx

2
)

4πig20
(3)

Keeping only the zero mode of M2
x, we get a Berlin-Kac model with

(
∑

x

−→
ϕ x.

−→
ϕ x = V = L2) and rescaling,

M2 = M2
x/β, β =

1

g20
, b =

1

Ng20
, b ≡ 1/λt (4)
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we get partition functions as:

Z ∝
∫ K+i∞

K−i∞
dM2e

V N
2 [bM2−L(M2)]

b(
V N
2 −1)

(5)

with,

L
(
M2

)
=

1

V

∑
ki

ln[2
D∑
i=1

(1− cos (ki)) +M2] (6)

where ki =
2π
L ni(ni = 0, 1, ..., L− 1)

Z(b) is normalize by Z(0) = 1
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Gap equations

In the large-N limit, it possible to calculate the partition function in the
saddle point approximation , we obtain:

b = B(M2) , (7)

with

B(M2) ≡ 1

V

∑
ki

1

2(
∑D

j=1(1− cos(kj)) +M2 .
(8)

M2 is the saddle point value of the suitably rescaled Lagrange multiplier
and can be interpreted as the mass gap or as the renormalized mass in
cutoff units.
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Gap equations

The saddle point equation is invariant under the simultaneous changes:

λt → −λt (9)

M2 → −M2 − 4D .

This can be seen by changing variables kj → kj + π for all j. Note that
this change of variable sends the zero-momentum mode into the fastest
oscillating one (that changes sign at every lattice site).

6



Gap equations in infinite volume

B(M2) =

∫
ddp

(2π)d
1

2(
∑D

j=1(1− cos(pj)) +M2
(10)

Let M2 go to zero. Correspondingly B(0) go to some criticcal value with

B(0) =
1

2

∫ ∞

0

dαe−αdI0(α)
d (11)

d → 2,B(0) → ∞. More precisely:

2dB(0) ∼ 2

π(d− 2)
(12)
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Gap equations in infinite volume

And the gap equation is then,

B(M2) =
1

4π

∫ 8

0

du
F (1/2, 1/2; 1;u(8− u)/16)

u+M2
(13)

d = 3:

B(0) =
2
√
6

3π2
Γ(

1

24
)Γ(

5

24
)Γ(

7

24
)Γ(

11

24
) = 0.2527... (14)

d → ∞ (mean field prediction):

2dB(0) = 1 +
1

2d
+ 3(

1

2d
)2 + 12(

1

2d
)3 + ... (15)
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Map between M2 plane and λ plane

We calculate the 2D (and 3D) gap equation for L = 2 exactly by solving
λ ≡ 1

b = P (M2)/Q(M2). The singular points (where ∂b/∂M2 = 0) appear
to be the roots of discriminant equation (∆ = 0) for a 3-order (4-order)
polynonial equation.

the map requires a Riemann surface with q + 1 sheets and 2q cuts in the
λt plane, where q is an integer of order LD. By connecting the sheets in
a specific way, we construct one circle at infinity that maps into the circle
at infinity in the M2 plane and q others that maps into the cut on the real
axis [−4D, 0].
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Map between M2 plane and λ plane
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Figure 1: loop in λ plane and loops in M2 plane

10



Map between M2 plane and λ plane
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Figure 2: cuts in λ plane and sheet boundaries in M2 plane
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Singular points (Finite V and Infinite V)
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Figure 3: singular points and infinite volume asymptotic mass gap in b plane
for L = 38 in 2D and L = 14 in 3D.
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Exact form of partition functions Z(b)

Using theorem of residues, we get the general fomula of partition
functions,

Z(b) =
∑
i

P (1/b)e
V Nbxi

2 (16)

where P (1/b) are polynomials of 1/b and xi are the roots of M2 of the

equations 2
∑D

i=1 (1− cos (ki)) +M2 = 0

For example, for L=2,N=2,

Z(b) =
3

32
(

1

128b3
− e−32b

128b3
− e−16b

4b2
) (17)
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Density of states

By doing inverse Laplace transform, the density of states is then

n(E) =
N

2πi

∫ K+i∞

K−i∞
dbebNEZ(b) (18)

n(E) is piecewise function with the form

n(E) =
∑
i

P (E − Ei)(2θ(E − Ei)− 1) (19)

which is a quasi-gaussian distribution at large volume and N.

For example,Fig 4 show the density of states at L=2, N=4.
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Density of states
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Figure 4: Density of states at L=2, N=4
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Zeros of the partition functions (2D)

The average energy per unit of volume V is

E = −(1/(V N))∂lnZ/∂b . (20)

In the saddle point approximation, we obtain

E = (1/2)(λt −M2) . (21)

If we now integrate over a contour C which close a zero of Z,we have,∮
C

db(dZ/db)/Z = i2π × number of zeros in C (22)
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We change variable to write∮
C

db(dZ/db)/Z = V N

∮
C′

dM2(db/dM2)(1/2)(1/b−M2) (23)

where C ′ is the contour corresponding to C in the M2 plane.

Consequently, if the contour C ′ in the M2 plane does not cross
the cut, then there are no zeros of the partition function inside the
corresponding C in the b-plane. We conclude that in the large-N limit,there
is no Fisher’s zero below the image of singular points line in b-plane.
(Phys.Rev.D80:054020,2009. Y.Meurice)

Here is a easy way to understand this conclusion in infinite volume: We
choose the contour C just alone the 4 hyperbolas, all the points on the
contour have the property that db/dM2 = 0. From Equ(23), we can also
get the conclusion.
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Zeros of the partition functions (2D)

The argument has been checked by numerical calculations. Fig 5 show
the zeros in b and λ plane with L = 6,N = 2.

The pictures in the finite volume indicate that the singular points of the gap
equation correspond to the end of lines of complex zeros at infinite volume.
Hence, zeros always stay away from the physical(i.e. real)domain in 2D.

The density of zeros in complex b plane (number of zeros in a fix area at b
plane) proportional to NV (Fig 6 are the log-log plots and the fit lines).
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Zeros of the partition functions (2D)
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Figure 5: Results of zeros and singular points in b plane and λ plane at
L=6,N=2.
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Density of zeros in b-plane
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Figure 6: density of zeros in b-plane (N=2, L variable and L=2,N variable)
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Conclusions

• we study the map between the mass gap M2 and the ’t Hooft coupling
on finite size L and in the large-N limit. We show that the map requires
a Riemann surface with q+1 sheets and 2q cuts in the ’t Hooft coupling
plane, where q is an integer of order LD.

• From the partition functions in finite volume,we searched Fishers zeros.
It has a similar features as 4D lattice gauge theory:Zeros stay away from
the physical(i.e. real)domain. And At infinite volume, the singular points
of the gap equation correspond to the end of lines of complex zeros.

• The number of zeros in unit area in b-plane is proportional to V N

• Density of states are piecewise functions.
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Thank you!
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