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SU(N) gauge theory in d=4 at T=0 is in one phase for all values of 
the gauge coupling.  

At the same time it exhibits dramatically different behavior over 
different length scales: from an ordered weakly coupled short 
distance regime to a disordered strongly coupled long distance 
regime with confinement and chiral symmetry breaking.  

This results into the rich set of phenomena of strong interaction 
particle physics and all of nuclear physics. 
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SU(N) gauge theory in d=4 at T=0 is in one phase for all values of 
the gauge coupling.  

At the same time it exhibits dramatically different behavior over 
different length scales: from an ordered weakly coupled short 
distance regime to a disordered strongly coupled long distance 
regime with confinement and chiral symmetry breaking.  

This results into the rich set of phenomena of strong interaction 
particle physics and all of nuclear physics. 

At some finite T it undergoes a phase transition to a deconfined 
phase exhibiting new phenomena. For up to temperatures several 
times the deconfinement T it appears to behave like a strongly 
coupled low viscosity fluid;  the dynamics evolution of the 
transition apparently brings about (effective) thermalization 
within surprisingly short time scales (0.5 fm/c).  
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The theory is controlled by a (gaussian) UV fixed point (UV complete)

There is one relevant direction (gauge coupling) for the pure gauge 
theory, and two (coupling and mass) when coupled to fermions

FP
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The theory is controlled by a (gaussian) UV fixed point (UV complete)

There is one relevant direction (gauge coupling) for the pure gauge 
theory, and two (coupling and mass) when coupled to fermions

This means that QCD with massless fermions is a theory with no 
parameters :   ‘the perfect theory’

FP
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All these fundamental non-perturbative features are hard to extract 
directly. 

Analogous problem: Hydrodynamic turbulence - passage from laminar to turbulent 
flow (vortices!)
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All these fundamental non-perturbative features are hard to extract 
directly. 

Analogous problem: Hydrodynamic turbulence - passage from laminar to turbulent 
flow (vortices!)

The natural framework for dealing such problems is a Wilsonian RG 
blocking procedure bridging the different scale regimes.   

The history of actual RG blocking implementation in LGT is 
somewhat patchy.  

This is probably due to the success of direct MC simulations of PF’s and 
expectations in pure gauge theories -- much more challenging in the
presence of fermions (Grassmann variables) and the non-local fermion 
determinant.   

Major unresolved problems:   finite chemical potential,  non-equilibrium 
(real-time) dynamical evolution. 
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Various RG blocking implementations: 

FP
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• ‘Perfect action’ construction  (ultimate goal)
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Various RG blocking implementations: 

FP

• Wilson (early)

• ‘Perfect action’ construction  (ultimate goal)
(P. Hasenfratz, Niedermeyer, A. Hasenfratz, DeGrand, .....) 
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Various RG blocking implementations: 

FP

• Wilson (early)

• ‘Perfect action’ construction  (ultimate goal)
(P. Hasenfratz, Niedermeyer, A. Hasenfratz, DeGrand, .....) 

   Find action along Wilsonian renormalized trajectory
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Various RG blocking implementations: 

FP

• Wilson (early)

• ‘Perfect action’ construction  (ultimate goal)
(P. Hasenfratz, Niedermeyer, A. Hasenfratz, DeGrand, .....) 

   Find action along Wilsonian renormalized trajectory

• MCRG (more modest)  
(Swedsen, ....)   
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Various RG blocking implementations: 

FP

• Wilson (early)

• ‘Perfect action’ construction  (ultimate goal)
(P. Hasenfratz, Niedermeyer, A. Hasenfratz, DeGrand, .....) 

   Find action along Wilsonian renormalized trajectory

• MCRG (more modest)  
(Swedsen, ....)   
Start from any other suitable action
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Another (even more modest) approach 
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Another (even more modest) approach 

• Do not attempt to construct general RG effective action suitable for 
any observable. 

• Employ approximate but easily explicitly computable RG decimation 
procedures that can provide bounds on judicially chosen observables 
(free energies, ...) 

• Use the bounds to constrain the corresponding exact quantities and 
hence derive statements about their behavior. 

The approach hinges on having computable decimations that provide 
sharp enough bounds. 
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Another (even more modest) approach 

• Do not attempt to construct general RG effective action suitable for 
any observable. 

• Employ approximate but easily explicitly computable RG decimation 
procedures that can provide bounds on judicially chosen observables 
(free energies, ...) 

• Use the bounds to constrain the corresponding exact quantities and 
hence derive statements about their behavior. 

The approach hinges on having computable decimations that provide 
sharp enough bounds. 

It turns out to be very effective for pure gauge theories.  

Adding fermions, though, presents, as usual, a challenge of another 
order of magnitude. 

6Tuesday, March 2, 2010



RG Study of IR structure in gauge theories T.Tomboulis (UCLA)

Start with plaquette action at spacing a, for example Wilson action:

Ap(U) =
β

2
Re trUp

Character expansion of the exponential of plaquette action:

eAp(U) =
�

j

dj Fj(β, a)χj(U)

= F0

�
1 +

�

j �=0

dj cj(β) χj(U)
�

SU(2): j = 0, 1
2 , 1, 3

2 , . . ., dj = (2j + 1).

Partition Function (PF) on lattice Λ

ZΛ(β) =
�

dUΛ

�

p

�
1 +

�

j �=0

dj cj(β) χj(U)
�
≡ ZΛ

�
{cj(β)}

�
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‘Potential moving’ RG schemes

Limiting case (MK): vanishing strength for interior plaquettes -- 
complete ‘move’ to boundary. 
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a→ ba→ b2a→ · · ·→ bna

Λ→ Λ(1) → Λ(2) → · · ·→ Λ(n)

The RG decimation procedure can be summarized  as set 
of decimation rules for each successive step:

Λ(m) abm abm+1Λ(m+1)from lattice of spacing to lattice of spacing

The rules give explicit expressions for the computation of the character 
expansion coefficients at the m-th step given those at the (m-1)-th step: 

F0(m) = F0(ζ, r, b, {ci(m− 1)})
cj(m) = cj(ζ, r, b, {ci(m− 1)})

Parameters                 control the amount by which undecimated 
plaquettes are ‘renormalized’ to compensate for the decimated ones.  

ζ, r, . . .
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After each decimation step:

ZΛ(m−1)

�
{cj(m− 1)}

�
→ F0(m)|Λ(m)| ZΛ(m)

�
{cj(m)}

�

with resulting action on  the m-th lattice

exp Ap(m) =
�
1 +

�

j �=0

dj cj(m) χj(U)
�

= exp




�

j

βj(m) χj(U)





Both positive and negative couplings generally occur 
in action but coefficients                 if reflection 
positivity is maintained by decimation rules. 

cj(m) ≥ 0
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The  resulting PF at the m-th step can be either an upper or a 
lower bound on the PF of the (m-1)-th step by  appropriate choice of the 
decimation parameters. 

One may then interpolate between the upper and lower bounds by 
means of interpolating expansion coefficients :    

There is then a value                                      at which  the two PF 
become equal.  Iterating this procedure one obtains an exact 
representation of the PF on successively decimated lattices:          

cj(m, α) , 0 < α < 1

ZΛ(β) = ZΛ

�
{cj(β)}

�

= lnF0(1, α(1)) ZΛ(1)

�
{cj(1, α(1)}

�

= · · ·

= exp
� n�

m=1

lnF0(m, α(m)) |Λ|/bdm
�
ZΛ(n)

�
{cj(n, α(n))}

�

α(m) = α(m)
Λ (ζ, r, · · · )
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Choice of interpolation is of course not unique.  The values                   
depend on this choice. Suppose one considers a family of interpolations 
parametrized by a parameter t. Then                            and there is 
‘reparametrization invariance’ in the PF representation: 

α(m) = α(m)(t)

α(m)

ZΛ(β) = exp
� n�

m=1

lnF0(m, α(m)(t)) |Λ|/bdm
�
ZΛ(n)

�
{cj(n, α(n)(t))}

�

Changes of interpolation choice, i.e. shifts in t, amount to shifts in 
the relative size of the accumulated ‘bulk contributions’ and the 
PF on the final lattice       of lattice spacing Λ(m)

abm
To fix this we need to compare with observables that couple 
at scales 

abm

Note: Procedure analogous to that in MCRG
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Consider then expectation of observable O:
�
O

�

Λ
=

ZΛ[O]
ZΛ

ZΛ[O] =
�

dUΛ

�

p

�
1 +

�

j �=0

dj cj(β) χj(U)
�
O(U)

such as Wilson loops W[C],  connected 2-plaquette correlator, 
defect order parameters (vortex free energy).  

One may now, with some extra work, apply the previous  
procedure to            obtaining representations for it on 
successively decimated lattices. 

ZΛ[O]

Note: Contribution from insertion of        is of order                
(where       ‘support’ of the observable) relative to bulk free 
energy per unit lattice volume. 

Hence at each step bulk free energy contributions cancel (if 
need be by small shift in parametrization between numerator 
and denomiinator. 

|S|/|Λ|
|S|

O
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So
�
O

�
=

ZΛ[O]
ZΛ

= · · · =
ZΛ(m) [O]

ZΛ(m)
= · · · =

ZΛ(n) [O]
ZΛ(n)

This procedure can be applied, with slightly varying technical 
details, to a variety of appropriate (long distance) observables.  

Note:      
• Each such representation holds only for the particular expectation 
considered -- it is not implied that the same specific values of decimation-
interpolation parameters give exact representations for a different 
observable.    
• In practice though they may give good approximation. 
• The exact values of the interpolating parameters need not be 
known in order to (rigorously) deduce the observable’s behavior 
as a function of scale provided the upper (lower) bounds are 
sharp enough -- the latter are easily computable at each step 
by explicit algebraic rules. 
 

14Tuesday, March 2, 2010



RG Study of IR structure in gauge theories T.Tomboulis (UCLA)

SU(2)

• Confining behavior is the result for any initial β since the upper bound

cj(n)→ 0 for n→∞

for any initial β.

• Fixing the resulting string tension κ(β, n) implies a relation between n
and initial β = 2/g2.

• Now zero coupling g = 0 is a fixed point of the decimations. This implies
that to reach any fixed value of the string tension (some given value of
cj(n)’s) requires

n→∞ ⇐⇒ β →∞ .

In other words one necessarily has

g(a)→ 0 for a→ 0

(UV asymptotic freedom) as an essentially qualitative feature of the dec-
imation flow.

SU(3) Ditto
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U(1)

• Starting with β ≥ β0, where β0 ∼ 1, the upper bound decimations hit a
fixed point. In fact, the location of the fixed point is found to vary with
varying starting (large) β, i.e. one gets a line of fixed points.

• For starting β ≥ β0 the decimations run to the strong coupling fixed point.

• This signals free massless behavior for weak coupling (continuum limit);
and a transition of the lattice model to the (universal) confined phase at
some β ∼ 1.
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•Practical RG blocking schemes with dynamical fermions presents new 
set of problems 

•Free fermions:   Analytical work (Balaban et al, Wiese); more recent 
work in connection with rooting problem (Shamir) 

•Interacting fermions:  In connection with perfect action and MCRG 

RG blocking with Fermions
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•Practical RG blocking schemes with dynamical fermions presents new 
set of problems 

•Free fermions:   Analytical work (Balaban et al, Wiese); more recent 
work in connection with rooting problem (Shamir) 

•Interacting fermions:  In connection with perfect action and MCRG 

RG blocking with Fermions

Fermions being Grassmann variables cannot be dealt with as bosons. 

• Grassmann ‘integrals’ cannot be simulated or approximated as bosonic integrals 

• Proofs of bounds as those used in pure gauge theory above no longer hold.  

• Any straight integrations over light fermions result in non-localities  
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ZΛ =
�

dUΛ[dψ̄dψ]Λ exp[ Ag(U) + ψ̄K(U)ψ ]

=
�

dUΛ DetK(U) exp[ Ag(U)]

The problem:
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ZΛ =
�

dUΛ[dψ̄dψ]Λ exp[ Ag(U) + ψ̄K(U)ψ ]

=
�

dUΛ DetK(U) exp[ Ag(U)]

The problem:

Λ, spacing a −→ Λ(1), spacing ba

Λ = Λ(1) ∪ (Λ \ Λ(1))
{U, ψ̄,ψ }Λ = {U, ψ̄,ψ }Λ(1) ∪ {V, η̄, η }Λ\Λ(1)

Set up an RG blocking scheme: 
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ZΛ =
�

dUΛ[dψ̄dψ]Λ exp[ Ag(U) + ψ̄K(U)ψ ]

=
�

dUΛ DetK(U) exp[ Ag(U)]

The problem:

Λ, spacing a −→ Λ(1), spacing ba

Λ = Λ(1) ∪ (Λ \ Λ(1))
{U, ψ̄,ψ }Λ = {U, ψ̄,ψ }Λ(1) ∪ {V, η̄, η }Λ\Λ(1)

Set up an RG blocking scheme: 

ZΛ =
�

dUΛ1) [dψ̄dψ]Λ(1) exp[ A(1)
g (U) + A(1)

f ]
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ZΛ =
�

dUΛ[dψ̄dψ]Λ exp[ Ag(U) + ψ̄K(U)ψ ]

=
�

dUΛ DetK(U) exp[ Ag(U)]

The problem:

Λ, spacing a −→ Λ(1), spacing ba

Λ = Λ(1) ∪ (Λ \ Λ(1))
{U, ψ̄,ψ }Λ = {U, ψ̄,ψ }Λ(1) ∪ {V, η̄, η }Λ\Λ(1)

Set up an RG blocking scheme: 

ZΛ =
�

dUΛ1) [dψ̄dψ]Λ(1) exp[ A(1)
g (U) + A(1)

f ]

exp[ A(1)
g (U) ] =

�
DV exp[ Ag(U, V ) ]

�
DetK(U, V )�

DV DetK(U, V )

�

exp[ A(1)
f (U, ψ̄,ψ ] =

�
DV [dη̄dη] expAf (U, V, ψ̄, η̄,ψ, η)

�
[dχ̄dχ] ρ(η̄, η, χ̄, χ)

=
�

DV [dχ̄dχ] exp Âf (U, V, ψ̄,ψ, χ̄, χ)
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exp[ A(1)
g (U) ] =

�
DV exp[ Ag(U, V ) ]

�
DetK(U, V )�

DV DetK(U, V )

�

exp[ A(1)
f (U, ψ̄,ψ ] =

�
DV [dη̄dη] expAf (U, V, ψ̄, η̄,ψ, η)

�
[dχ̄dχ] ρ(η̄, η, χ̄, χ)

=
�

DV [dχ̄dχ] exp Âf (U, V, ψ̄,ψ, χ̄, χ)

DetK(U) =
�

{L}

det[KL(U) ]

Use the loop expansion of the determinants 

to evaluate the dets ratio -- essentially local!

The blocking factor                    introduces ‘fat’ links for the 
thinned-out (integrated) fermions. 

ρ(η̄, η, χ̄, χ)
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SU(2) with f flavors of fundamental fermions 
(preliminary)

20Tuesday, March 2, 2010



RG Study of IR structure in gauge theories T.Tomboulis (UCLA)

Summary - Outlook

• A framework was developed that utilizes approximate explicitly 
computable RG transformations to constrain the behavior of 
observables. 
• This allows one to obtain exact representations of PF’s and suitable 
observables in pure gauge systems on progressively coarser lattices.
• RG flow from weak coupling to the strong coupling FP at T=0 
 in SU(2) and SU(3).  
• A fixed point prevents flow from weak to strong coupling in U(1)         
• The same method can be applied to 2-dim spin models 
•The method cannot be extended in the presence of fermions since the 
necessary upper and lower bounds cannot be obtained.  
•More elaborate schemes are needed to elucidate the modifications to 
IR structure (e.g. IR FP’s) due to sufficient number of fermions
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