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Introduction 



Strong interaction
Described by QCD

Landau gauge

UV regime simple due
to asymptotic freedom

IR regime becomes 
strongly coupled -
no small parameter

Description via local
degrees of freedom 
could break down ...
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Strong interaction
Described by QCD

Landau gauge

UV regime simple due
to asymptotic freedom

IR regime becomes 
strongly coupled -
no small parameter

Description via local
degrees of freedom 
could break down ...

... but the dynamics 
can prevent this

H. Gies, Phys. Rev. D 66 (2002) 025006

mized’’ cutoff functions have been proposed !17". The opti-
mization criterion focuses on improving the convergence of
approximate solutions to flow equations; in fact, for scalar
O(N) symmetric theories, it leads to better results for the
critical exponents !18".
Spectrally adjusted cutoff. The class of cutoff functions

employed in this work is also considered to be improved in
the sense mentioned above. In this case, the improvement
does not refer to the precise shape of the cutoff function, but
rather to the choice of its argument. Here, we will use not
just the spectrum of the Laplace operator #which would be
the gauge-covariant generalization of the momentum
squared$, but the full second functional derivative of the ef-
fective average action %k

(2) evaluated at the background field.
The argument of the cutoff function can be understood as

a parameter which controls the order and size of the momen-
tum shell that is integrated out upon lowering the scale from
k to k!&k . It appears natural that a truncated flow can be
controlled better if each momentum shell covers an equal
part of the spectrum of quantum fluctuations. The spectrum
itself is not fixed, but k dependent; lower modes get dressed
by integrating out higher modes. In order to adapt the cutoff
function to this spectral flow, we insert the full %k

(2) into its
argument, and so obtain a ‘‘spectrally adjusted’’ cutoff.
This has two technical consequences: first, as the flow

equation is evaluated at the background field in our trunca-
tion, the right-hand side can be transformed into a proper
time representation; here, we have powerful tools at our dis-
posal that allow us to keep track of the full dependence of
the flow equation on the field strength squared. Second, the
degree of nonlinearity of the flow equation strongly in-
creases, inhibiting its straightforward analytical or numerical
computation even within simple truncations. We solve this
technical problem by first expanding the flow for the gauge
coupling in an asymptotic series, and then reconstructing an
integral representation for this series by analyzing the lead-
ing #and subleading$ asymptotic growth of the series coeffi-
cients. Whereas most parts of our work are formulated in d
"2 dimensions and for the gauge group SU(N), this final
analysis concentrates on the most interesting cases of d#4
and N#2 or N#3.
Results. As a result, we find a representation of the '

function of Yang-Mills theory. For weak coupling, we redis-
cover an accurate perturbative behavior. As the scale k ap-
proaches the infrared, the coupling grows and finally tends to
an infrared stable fixed point, (s→(* . Our quantitative re-sults are

(*!11.3 for SU#2 $,

(*!7.7$2 for SU#3 $. #3$

The uncertainty in the SU#3$ case arises from an unresolved
color structure in our calculation #cf. Appendix E$.
The complete flow of the running coupling is depicted in

Fig. 1 for pure SU#2$ Yang-Mills theory in comparison with
perturbation theory. For illustrative purposes, we use
(s(MZ)!0.117 as the initial value (MZ!91.2 GeV). Siz-
able deviations from perturbation theory occur for k

%1 GeV, and the fixed point plateau is reached for k
#O (10 MeV). We shall argue below that a larger trunca-
tion as well as the inclusion of dynamical quarks are ex-
pected to decrease the value of (* .The paper is organized as follows. Section II briefly re-
calls the framework of flow equations in gauge theories with
the background-field method and describes our basic ap-
proximations. In Sec. III we boil down the flow equation as
required for our truncation. Section IV is devoted to extract-
ing the RG flow of the running gauge coupling, which is the
main result of the present work. The role of the spectrally
adjusted cutoff is illustrated in Sec. V. Section VI contains
our conclusions and a discussion of our results in the light of
related literature.

II. FLOW EQUATION FOR YANG-MILLS THEORY

We begin with a brief outline of the flow equation and the
background-field formalism as they are employed in this
work. We focus on direct applicability and the required ap-
proximations and leave aside more formal #though impor-
tant$ aspects, as they are presented in !12" and !19". Let us
therefore start with a more explicit representation of the flow
equation for the effective average action,

) t%k!A ,Ā"# 1
2 STr*) tRk#%k

(2)! Ā ,Ā" $

&†%k
(2)!A ,Ā"'Rk#%k

(2)! Ā ,Ā" $‡!1+, #4$

where we denote the so-called classical gauge field by A,
a ,

which is the usual field variable of the quantum effective
action #conjugate to the source$. We also introduce a back-
ground field Ā,

a , and have already inserted %k
(2) evaluated at

the background field into the cutoff function.1 The symbol
STr implies tracing over all internal indices and provides for

1This %k
(2) is evaluated at the background field because an A de-

pendence would spoil the one-to-one correspondence of the flow
equation to the functional integral.

FIG. 1. Running coupling (s versus momentum scale k in GeV
for gauge group SU#2$, using the initial value (s(MZ)!0.117. The
solid line represents the result of our calculation in comparison with
one-loop perturbation theory #dashed line$.
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Aspects of confinement
No colored particles measured (i.e. no fractional 
electric charge): quarks / nucleon 

Static / “non-relativistic” aspects:

Area-law behavior of large Wilson loops in the 
strong coupling limit of lattice gauge theory

Stringy behavior / flux-tube

Dynamic / Relativistic aspects:

Production of new hadrons when 
the system is sufficiently excited

String breaking / hadronization

� 10−28

K. G. Wilson, PRD 10 (1974) 2445



The Physical                         ... are quite different  
degrees of                             from the 
freedom of                             underlying
matter at low                        building 
scales ...                                 blocks        

It would be very desirable to 
have a direct connection of the 
physical observables to the 
dynamics of the fundamental 
local constituents

Some kind of Construction manual ...

Description of matter

Landau gauge: quarks, 
transverse gluons 

& ghosts

Hadrons



Functional methods 
& IR-analysis



Dyson-Schwinger eq´s
Idea: An average should not depend on the way 
the sum is performed:
(in YM theory             )

Formulation in terms 
of the effective action   :

DSEs for arbitrary Green functions of a theory 
can be obtained algorithmically

= −

−1 −1

Ghost Propagator
Gluon Propagator

Coupled Nonlinear 
integral equations 
for the propagators

R. Alkofer, M. Huber and K. S., 
Comp. Phys. Comm. 180 (2009) 965
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Ghost-gluon vertex (V1 & 2)

3-gluon vertex

4-gluon vertex

Propagator DSEs 
involve the vertices

Infinitely coupled 
system of equations

in general 
no controlled 
Approximation scheme 
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Functional hierarchies
The functional equations look quite similar ... 
but the dynamics is resummed rather differently:

RG DSE

Infinite tower of coupled functional equations 
for the local Green functions of the theory

Infinite tower of coupled functional equations 
for the local Green functions of the theory

involves cutoff,
successive mode elim.

unconstr.  integration,
modes are mixed

only 1-loop graphs &
only dressed vertices

up to 2-loop graph (4D)
& one bare vertex

all graphs scale 
identically (conf. case)

suppressions due to
bare vertex

A. Constraints from the functional RG

The FRGs for the ghost and gluon propagators are given
diagrammatically in Fig. 3. With a mode cutoff, which only
removes a single momentum mode, the regulator insertion
is proportional to a !-function and simply restricts the loop
integral to a given momentum p2 which we take to be
vanishing. Then the loops on the right-hand side of the flow
simply count the powers of global momentum scaling of
the quantum fluctuations, no initial condition, similar to the
classical term in the DSE, appears; see also [8]. The
potential cancellations necessary for the initial condition
are discussed at the end of our proof.

We are now counting anomalous dimensions on both
sides of the equations in terms of powers of one external
momentum scale p2 in the infrared region p2 ! !2

QCD.

For the global scaling (8) considered here all anomalous
dimensions in terms of internal momenta of the loops
translate directly into anomalous dimensions of the exter-
nal momentum scale. This is also true for the vertex
equations considered below. In this respect the regulator
insertion, denoted by the crosses, carries the anomalous
dimensions of inverse propagators [6,8].

The constraint equations for ""2n;m can be derived in
several ways. A somewhat pedestrian approach is to count
anomalous dimensions "2n;m of the dressing functions on
both sides of the equations and then converting to ""2n;m

with the help of (14). More efficiently, we note that the
"2;0;"0;2 carry the renormalization group scaling of the
corresponding Green functions and match on both sides of
the FRG equations. In particular this is true for the propa-
gator FRGs in Fig. 3. Consequently all "2;0, "0;2 drop out of
the FRG-relations for a general vertex #2n;m. Note also that
the sum of the canonical dimensions d2i;j, (9), in a given
diagram for #2n;m simply gives the total canonical dimen-
sion d2nþm, and hence the d2i;j also drop out of the FRG-
relations. Then, we are left with relations for solely the
""2i;j. For the propagators the constraints read

0 ¼ ""0;2 ¼ minð2 ""2;1; 2 ""0;3; ""0;4; ""2;2Þ; (17)

0 ¼ ""2;0 ¼ minð2 ""2;1; ""2;2; ""4;0Þ; (18)

from the gluon and ghost-FRGs. For the left-hand side of
these equations we used that ""2;0 ¼ ""0;2 ¼ 0 by definition,
cf. Equation (10). The minimum prescription on the right-
hand side of (17) and (18) takes into account that only one
of the diagrams may be leading in the infrared. The con-
straint (18) from the ghost-FRG entails

"" 2;1 & 0; ""2;2 & 0; ""4;0 & 0; (19)

and at least one of these has to be zero for (18) to be
satisfied,

"" 2;1 ¼ 0; or ""2;2 ¼ 0; or ""4;0 ¼ 0: (20)

The same analysis for (17) entails that ""2;1, ""0;3, ""0;4,
""2;2 & 0 with at least one of them being zero. For the proof
below, however, Eqs. (19) and (20) will be sufficient.
We conclude the FRG-analysis with a discussion of the

FRG-relations for general Green functions. Schematically
these relations read

"" 2n;m ¼ minð ""2nþ2;m; ""2n;mþ2; . . .Þ; (21)

where the first two terms are the tadpole contribution with
ghost tadpole ( ""2nþ2;m), and a gluon tadpole ( ""2n;mþ2),
respectively. The dots stand for other diagrams with at
least two vertices. It follows that ""2n;m appears as the
tadpole contribution in the relation for ""2n'2;m and
""2n;m'2, and more generally

"" 2ðn'rÞ;m'2s ( ""2n;m; (22)

for all r < n and 2s < m. This allows us to relate general
""2n;m to either ""2;1 for odd m and 2s ¼ m' 1, or ""2;2 for
even m and 2s ¼ m' 2. Thus we have

"" 2n;m &
!
""2;2 for m even
""2;1 for m odd

; (23)

and we conclude with (19) that

"" 2n;m & 0; 8 n;m 2 N; (24)

in general space-time dimension d. This constraint to-
gether with Eq. (20) will be important in what follows, as
it summarizes in a closed form the infinite number of
constraints from higher diagrams.

FIG. 3. Functional renormalization group equations for the gluon and ghost propagator. Filled circles denote dressed propagators,
and empty circles denote dressed vertex functions. Crosses indicate insertions of the infrared cutoff function. Only one possible
insertion of the infrared cutoff function per diagram is shown.
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gluon
RG

B. Constraints from Dyson-Schwinger equations

The Dyson-Schwinger equations for the ghost and gluon
propagators are given diagrammatically in Fig. 4, whereas
the corresponding equations for the ghost-gluon vertex are
displayed in Fig. 5. For the ghost-gluon vertex we have two
DSEs which are derived from either the functional gluon
DSE or the functional ghost-DSE, see [8]. As already
mentioned, the potential cancellations necessary for the
classical terms are discussed at the end of our proof.

We have seen in the analysis of the FRGs that the
!!2n;m-constraints boil down to simply counting the vertices
involved in a given diagram and summing up the corre-
sponding !!2n;m. The same would apply to the DSEs if we
only had dressed vertices in the DSE diagrams. However,
there is always one bare vertex which then counts as
!!2n;m ! !2n;m " !"!2n;m. These differences are given by

"!2n;m ¼ "d2nþm þ 1

2
ð2n!2;0 þm!0;2Þ: (25)

For example, we are thus led to !!2;1 ! "!2;1 for the right-
hand side of the ghost propagator DSE, and zero on the
left-hand side similar to the ghost-FRG. This simple count-
ing applies to all the diagrams. For its chief importance in
the proof we introduce the abbreviation

"! " "!2;1: (26)

The constraints derived from the propagator DSEs dis-

played in Fig. 4 are then given by

0 ¼ minð !!2;1 ! "!; !!0;3 !"!0;3;!"!0;4; !!0;4

! "!0;4; 2 !!0;3 ! "!0;4Þ; (27)

0 ¼ minð !!2;1 !"!Þ: (28)

Certainly, these relations can be derived as well in the
pedestrian way of counting !2n;m on both sides of the
equations and converting them to !!2n;m. Note that in con-
tradistinction to the FRG equations the DSEs do depend on
!2;0 and !0;2 via the "!2n;m.
In the two different DSEs for the ghost-gluon vertex in

Fig. 5 we again apply the now familiar counting and obtain

!! 2;1 ¼ minð !!2;1 þ !!0;3 ! "!; 2 !!2;1 !"!; !!2;2 ! "!Þ;
(29)

from the upper relation in Fig. 5 and

!!2;1 ¼ minð2 !!2;1 ! "!0;3; 2 !!2;1 ! "!; !!2;2 !"!0;3; !!4;0

! "!; two-loopÞ; (30)

from the lower relation in Fig. 5. These constraints will be
used in the next subsection. We emphasize that the above
relations are valid in arbitrary dimensions as the FRG-
relations derived in Sec. III A. In contradistinction to the
FRG-relations the DSE-relations depend on the dimension
via the "!2n;m.

FIG. 4. Dyson-Schwinger equations for the gluon and ghost propagator. Filled circles denote dressed propagators, and empty circles
denote dressed vertex functions.

FIG. 5. Dyson-Schwinger equations for the ghost-gluon vertex. Empty circles denote dressed vertex functions. All internal
propagators are dressed; the corresponding filled circles have been omitted for clarity of the figures. One-loop diagrams with the
same scaling behavior are only shown once. The ellipses denotes the other one- and two-loop diagrams which are not needed for our
analysis.
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IR-Analysis
Confinement is a long range / IR phenomenon

Classical Yang-Mills theory is “conformal” but 
quantum Fluctuations induce a scale 

Renormalization group (assumption):
far below this scale  Greens functions are
described by scaling

For vertices Kinematic IR 
divergences are possible
... and also realized

ΛQCD
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IR-exponent
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IR sensitive regions
When both hard    and soft    external momenta 
are present (                        ) ...

Loop momenta    of the order of all external 
scales contribute:

Divide integral into various IR sensitive regions:

Decomposed integrals depend on a single scale

ps ph

ps � ph,ΛQCD, M
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k

I3(ps, ph) =
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ddk
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1
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When both hard    and soft    external momenta 
are present (                        ) ...

Loop momenta    of the order of all external 
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IR sensitive regions
When both hard    and soft    external momenta 
are present (                        ) ...

Loop momenta    of the order of all external 
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Power counting
The parametric IR-dependence of the integrals on 
a single external scale can be obtained via a 
power counting analysis

Without numerically solving the DSEs

Leading loop correction & leading tensor 
structure dominates and determines scaling of 
the vertex --> algebraic equations for exponents

E.g. Gluon DSE

system of such algebraic equations
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IR truncation
DSEs for higher order vertices do not involve 
bare “driving terms”

... and are even linear!

Cannot self-consistently induce non-trivial IR 
power law solutions

The IR fixed point structure is determined by the 
primitively divergent Greens functions

++

+ ++

= +

+ + +

δn ≤ δn + X ⇒ X ≥ 0



Functional constraints
The functional Renormalization group forms a 
distinct tower of equations that involve the same 
green functions

But: All arising 
vertices are dressed

The l.h.s. is given by 
the leading term on 
the r.h.s., e.g. :

Yields important 
constraints for 
the DSE system!

C.S.Fischer & J.M.Pawlowski, 
PRD 75 (2007) 025012; PRD  80 (2009) 025023

δgg ≤ 3δgg + 2δgh + δgl

= + + +

δgg ≤ 2δgg + δ3g + δgh + 2δgl

--> ghost-gluon vertex not IR enhanced



Gauge sector
& gluon confinement



Yang-Mills sector
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IR analysis
The DSE system for the uniform IR exponents ...

                                      ... simplifies considerably!

Unique scaling solution of the DSE system

−δgh = min (0, δgg + δgh + δgl) ,

−δgl = min (0, δ3g + 2δgl, δgg + 2δgh, 2δ3g + 4δgl, δ4g + 3δgl)
δgg = min (0, 2δgg + 2δgh + δgl, δ3g + δgg + δgh + 2δgl)
δ3g = min (0, 2δgg + 3δgh, 2δ3g + 3δgl, δ3g + 2δgl, δ4g + 2δgl, 3δ3g + 5δgl, δ4g + δ3g + 4δgl) ,

δ4g = min (0, 3δgg + 4δgh, 3δ3g + 4δgl, δ4g + 2δgl, 2δ3g + 3δgl, δ4g + δ3g + 3δgl, 4δ3g + 6δgl, δ4g + 2δ3g + 5δgl, 2δ4g + 4δgl) .

−δgh = min (0, δgh + δgl) ,

−δgl = min (0, 2δgh) ,

δgg = 0 ,

δ3g = min (0, 3δgh) ,

δ4g = min (0, 4δgh, 3δ3g + 4δgl)

R.Alkofer, C.S.Fischer and F.J.Llanes-Estrada, Phys. Lett. B 611 (2005) 279;
C.S.Fischer and J.Pawlowski, Phys. Rev. D 75 (2007) 025012



Yang-Mills fixed points
Two qualitatively different IR solutions - 
depending on the boundary conditions:

Decoupling scenario

massive IR gluon propagator

IR regime is entirely suppressed!

Scaling solution 

strong IR enhancement via ghost dynamics

Gluon confinement via Kugo-Ojima mechanism

P.Boucaud, et.al., JHEP 0806 (2008) 012;
A.C.Aguilar, D.Binosi, J.Papavassiliou, PRD 78 (2008) 025010;

C.S.Fischer, A. Maas & J. Pawlowski, arXiv:0810.1987

L. v. Smekal, A. Hauck & R. Alkofer, PRL 79 (1997) 3591; 
J. M. Pawlowski, et. al., PRL 93 (2004) 152002; ...

R. Alkofer, M. Huber & K. S, 
arXiv:0801.2862

κ ≈ 0.595

19

would arise only for κ ≥ 3/4. Finally, the scaling of the 4-gluon vertex in the uniform limit that satisfies the DSE

system is obtained from the corresponding DSE fig. 6 as before and yields the known result δu4g = −4κ whereas the

determination of the corresponding kinematic divergences requires a more detailed study. In summary, the IR fixed

points for the two qualitative distinct solutions are given by Table I.

δgh δgl δugg δu3g δu4g δghgg δglgg δgl3g
scaling −κ 2κ 0 −3κ −4κ 0 min

�
0, 3

2 − 2κ
�
min (0, 1− 2κ)

decoupling 0 1 0 0 0 0 0 0

Table I: The IR exponents for the leading Green functions of the IR fixed points of Landau gauge Yang-Mills theory within the
two possible IR scenarios. The scaling analysis only restricts the parameter to be positive κ ≥ 0, and yields rather weak upper
bounds. (Note that these bounds on κ are weaker than the one that had been erroneously given in a preprint version of this
article. Stronger bounds 0.5 ≤ κ ≤ 1 are, however, supported by analyses of the actual loop integrals [12].)

These solutions fulfill all constraints that appeared in the course of the evaluation and present therefore refined IR

fixed points of Landau-gauge Yang-Mills theory. Several remarks are in order at this point:

• In this work we restricted our analysis to the IR behavior of Yang-Mills theory. The physical relevance of such a

study stems certainly from the fact that Yang-Mills theory presents the gauge sector of QCD and might therefore

provide important insight into qualitative properties of the strong interaction. Whereas an independent study

of the gauge dynamics is by definition sufficient in the quenched limit [6], in the case of dynamical QCD it is

not a priori clear that the quark dynamics does not affect the IR fixed point structure of gauge Green functions

obtained here. Yet, a corresponding recent IR analysis of QCD [7], based on the general methods developed in

this work, shows that the gauge sector is totally unaltered by the quark dynamics and thereby strongly supports

the relevance of the results presented here and in other studies of Yang-Mills theory.

• In contrast to the case of the conformal analysis discussed in the previous section, where the chosen boundary

condition merely excluded other solutions, the decoupling solution obtained for a generic condition is qualita-

tively different from the scaling solution obtained for a choice that had an unbroken global BRS charge [23].

Whereas in the scaling solution the ghosts are strongly IR enhanced resulting in divergent gluonic vertices, in

the decoupling solution neither the ghosts nor the vertices are anomalously enhanced. This strongly suppresses

any IR dynamics mediated by the gluons in the ratio ρ ≡ p2/m2
g where mg is the finite IR limit of the gluon

polarization. Thereby it is easy to see that in both cases the leading contribution to a Green function is given

by the ghost dynamics. In the decoupling case the IR exponents in Table I show directly that the leading term

in the skeleton expansion of a general vertex with n ghost-pairs is anomalously suppressed by ρn whereas purely

gluonic Green functions scale canonically. In addition to the given decoupling solution there might be further

IR fixed points where even the vertices decouple and become IR constant [33].

• Recent lattice simulations on large lattices [3] show a gluon propagator that does not feature a decrease in the IR

and a ghost propagator that is basically not IR enhanced and thereby favor the decoupling scenario. Moreover,

it has been argued that this is probably neither a finite volume [34] nor a statistical effect [35]. However, there

seem to be issues with Gribov copies [36, 37] and discretization effects [38] in these analyses that could shadow

the scaling behavior in the deep IR, so that a unequivocal discrimination of the two scenarios is not possible with

the present data. Another view is presented in [39], where it is suggested that the different boundary conditions

[23] correspond to distinct residual gauge fixing conditions. In principle Gribov copies could be an issue in the

DSE system as well and the constraint to the fundamental modular region that is free of Gribov copies could

change these equations and their solution structure. However, it has recently been shown explicitly [40] that at

least the restriction to the first Gribov region [5] using the Gribov-Zwanziger action [41] does not affect the IR

fixed point structure of the scaling solution.

• The IR exponents given in Table I determine only the anomalous scaling laws for the most singular tensor

parts. The scaling of the full Green functions involves also the canonical scaling dimension incorporated in the

tensors. In particular it is possible that some dressing functions are more IR singular than the leading dressing

function, but their contribution to the vertex is nevertheless subleading since it is additionally suppressed by

the canonical scaling of their tensor. As we show in [20] this is indeed the case for the ghost-gluon vertex

which features more structure than the above result suggests. Instead, a soft-gluon singularity appears in the

form factor of the longitudinal tensor that is additionally suppressed by the gluon momentum in the tensor and

actually IR vanishing, whereas the tree-level tensor is entirely IR finite and presents the IR leading structure. In

order to reveal such subtleties in our power counting analysis we would have had to include different anomalous

dimensions for the different tensor structures. Since we present an explicit analytic solution for the IR limit



 Scaling solution
Results Compared to quenched lattice data 
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Recent lattice data
Challenging recent data on large lattices

Gluon becomes IR finite and ghost roughly bare

problems with Gribov copies? 

Problems with the gauge definition?

Apparently no problem with Gribov ambiguity in 
continuum framework
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Quark propagator
Only DSE for the quark propagator considered

Two different tensor structures in the IR regime

Vector part           &  scalar part 

Dynamical Spontaneous 
chiral symmetry breaking
in the propagator

But: No positivity violations 
and no strong gluonic dynamics 
that induce quark confinement

∼

/p

M2
∼

1

M
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Phys. Rev. D 67 (2003) 094020
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DSEs in Quark sector
System in the 
matter sector:

In quenched 
approximation: gauge
results as an input

Peculiarity of the DSE system:

one bare vertex in each DSE

quarks & ghosts don’t couple at tree level

Quark-ghost DSE has to be included

Effectively dressed non-Abelian graph as in RG
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FIG. 9: The infrared leading diagram of the quark-gluon vertex DSE is shown in the first line. In the second line we show an
approximation of the full quark-gluon vertex DSE that preserves all infrared features of the equation, while also capturing the
leading 1/Nc-parts of the ultraviolet properties.

E. Soft-gluon singularity in the quark-gluon vertex

In addition to the main infrared singularity that appears when all scales in a given Green function are sent to zero,
there can be kinematical singularities that appear in specific kinematic sections. The present counting rules relied
on the implicit assumption that all external momenta pi scale as some common scaling variable p. However, in case
any of the momenta vanishes identically this is not fulfilled. In the parameterization with a common scaling variable
p and dependencies on the other momenta given in terms of dimensionless momentum ratios pi/p ∈ (0,∞) or angle
cosines between momentum vectors xi ∈ (−1, 1), the IR expression reads

F (pi/p, xi)(p
2)α , i = 1 . . . n − 1

and these kinematic singularities appear as singularities of the function F . We have identified such a kinematic
singularity for the quark-gluon vertex in the soft-gluon kinematic section where the gluon momentum p3 = p2−p1 = 0,
whereas p2

1 and p2
2 may be large. In this configuration the singularity is even self-consistently enhanced and thereby is

likely to constitute a stable solution of the DSE system. This singularity directly extends the uniform IR singularity
discussed above and reported previously in [57] to this larger kinematic section.

The mechanism behind this singularity is based on the strong
(

p2
)−3κ

singularity in the three-gluon vertex when
all its momenta vanish simultaneously. To see this consider the infrared leading diagram (9) of the quark-gluon vertex
DSE.

p1 p2

p3 = ε

p1 − δ

δ δ + ε

We choose a momentum configuration, where the external momenta p2
1 and p2

2 may be large, but the external gluon
momentum p3 ≡ ε is small. This allows to route the loop momentum δ to expose the relevant phase-space where both
internal gluon momenta, δ and δ + ε, are small. The incoming quark momentum is fixed at p1 and the outgoing is
p2 = p1 + ε: Now, if there are soft-gluon kinematic singularities in the quark-gluon vertex, these also appear in the

IR



The non-Abelian graph induces a non-linearity in 
the quark-gluon vertex DSE
--> self-consistent enhancement

IR singularity of the
quark-gluon vertex: 
                     

Same strong IR-Singularity
in the soft gluon limit for 
arbitrary quark kinematics
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The non-Abelian graph induces a non-linearity in 
the quark-gluon vertex DSE
--> self-consistent enhancement

IR singularity of the
quark-gluon vertex: 
                     

Same strong IR-Singularity
in the soft gluon limit for 
arbitrary quark kinematics

Soft singularity provides mechanism
for        anomaly &         mass splitting
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Quenched solution
IR fixed points of quenched QCD:

Strong, self-consistently enhanced 
singularities in the quark-gluon vertex - even 
when only the gluon momentum vanishes!

Second solution without enhanced vertex

Kinematic case important because:
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Static Confinement
Quark-gluon
vertex induces 
strongly singular 
quark-quark 
interaction

4-quark vertex lowest order in the expansion of the 
gauge invariant correlator including a Wilson line

Quark confinement 
due to Linear potential
whenever the static
quarks are far apart
and the gluon is soft

IR slavery: different mechanism than for gluons

Γ4q ∼ (p2)2κ−1+2(−1/2−κ ) p−4=

Ṽ ∼ |�p|−4

V ∼ |�x|

Fourier
transform
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Realization in 1PI DSE
4-quark DSE should encode meson confinement

1-loop gluon exchange is suppressed since there 
is always one bare vertex 

but ... the 2-loop contribution 
from the higher order DSE is 
more IR singular

strong IR-divergence in accordance to NPI / RG
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+ ++
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Universal mechanism
Quenched QCD provides confining potential

Fermion determinant entirely neglected in 
quenched lattice studies - No quark dynamics ...

... yet, quarks are present in the DSE treatment

Same result for a theory where the matter fields 
are fundamentally charged scalars

much simpler theory (model system) --> lattice

The Confinement 
mechanism is a
property of the gauge
dynamics and not of 
the matter sector!

s s

h h
J(M → ∞, 0)

≡

L. Fister, R. Alkofer  & K. S.
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Unquenched QCD
Coupled system of equations of the gauge and 
matter sector

Unquenching 
effects via closed
quark loops

introduce the 
quark masses mi
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Unquenched QCD
Coupled system of equations of the gauge and 
matter sector

Unquenching 
effects via closed
quark loops

introduce the 
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Dynamical Screening
A Strong soft divergence is not compatible with 
the Yang-Mills scaling solution

it would contribute in the unquenching 
diagrams even for large loop momenta of the 
order of the quark mass and dominate over the 
leading ghost loop

signalizes 
screening of the
interaction

Finite mass QCD cannot be asymptotically 
confining but only as long as the energy of the 
system is far below the quark masses
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Fixed points of QCD
Fixed point structure depends on the quark mass:

Gauge sector is unchanged by the quark dynamics

No strong kinematic singularity of the 
quark-gluon vertex in dynamical QCD

Confining interaction is screened precisely at 
scales of the order of the quark mass

has the Potential to describe string breaking & 
hadronization ... but  color can still be 
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Perturbative UV fixed point:
applies for
Coulomb part 
(1-gluon exchange)
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For                            heavy quark picture not valid

Perturbative UV fixed point:
applies for
Coulomb part 
(1-gluon exchange)

Static IR fixed point:
valid for 
linear confining potential
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For                            heavy quark picture not valid

Fixed points determine complete qualitative form 
analytically and beyond the strong coupling limit

Perturbative UV fixed point:
applies for
Coulomb part 
(1-gluon exchange)

Static IR fixed point:
valid for 
linear confining potential

Massive IR fixed point:
Screened by quark loops 
potential breaks down

pg �mq ⇒ x�1/mq



Conclusion & Outlook
Simple dynamical mechanism for
quark confinement in Landau gauge QCD based on 
IR-scaling fixed points

relies on soft-gluon singularities of vertex

explains both static and relativistic aspects

Coherent picture of the QCD vacuum

chiral symmetry breaking & confinement 

spontaneous & anomalous mass generation

Goal: Bound states & color confinement

How to do the same within an RG-analysis?




