THE INFRARED FIXED POINTS OF QCD AND THEIR PHYSICS

KAI SCHWENZER WASHINGTON UNIVERSITY IN ST. LOUIS

BASED ON:

R. ALKOFER, M. HUBER & K. S. ARXIV:0801.2862, R. ALKOFER, C.S. FISCHER, F. LLANES-ESTRADA & K. S., ARXIV:0804.3042, ANNALS PHYS. 324, 106 (2009) & K.S., ARXIV:0811.3608,

FEB 25. 2010

INTRODUCTION

STRONG INTERACTION

DESCRIBED BY QCD

 $Z_{QCD} = \int \mathcal{D}[A, c, q] \exp\left(\int \bar{q}(i\not\!\!D - m)q - \frac{1}{4}(F^a_{\mu\nu})^2 + \frac{(\partial_{\mu}A^a_{\mu})^2}{2\zeta} + \bar{c}^a(-\partial_{\mu}D_{\mu})c^a\right)$

• LANDAU GAUGE $\partial_{\mu}A_{\mu} = 0$

UV REGIME SIMPLE DUE TO ASYMPTOTIC FREEDOM

IR REGIME BECOMES STRONGLY COUPLED -NO SMALL PARAMETER

DESCRIPTION VIA LOCAL DEGREES OF FREEDOM COULD BREAK DOWN ...

STRONG INTERACTION

DESCRIBED BY QCD

$$Z_{QCD} = \int \mathcal{D}[A,c,q] \exp\left(\int ar{q}(i\not\!\!D-m)q - rac{1}{4}(F^a_{\mu
u})^2 + rac{(\partial_\mu A^a_\mu)^2}{2\zeta} + ar{c}^a(-\partial_\mu D_\mu)
ight)$$

• LANDAU GAUGE $\partial_{\mu}A_{\mu}=0$

UV REGIME SIMPLE DUE TO ASYMPTOTIC FREEDOM

IR REGIME BECOMES STRONGLY COUPLED -NO SMALL PARAMETER

DESCRIPTION VIA LOCAL DEGREES OF FREEDOM COULD BREAK DOWN ...

H. GIES, PHYS. REV. D 66 (2002) 025006

... BUT THE DYNAMICS CAN PREVENT THIS

ASPECTS OF CONFINEMENT

- NO COLORED PARTICLES MEASURED (I.E. NO FRACTIONAL ELECTRIC CHARGE): QUARKS / NUCLEON $\leq 10^{-28}$
- STATIC / "NON-RELATIVISTIC" ASPECTS:
 - AREA-LAW BEHAVIOR OF LARGE WILSON LOOPS IN THE STRONG COUPLING LIMIT OF LATTICE GAUGE THEORY K. G. WILSON, PRD 10 (1974) 2445
 - STRINGY BEHAVIOR / FLUX-TUBE
- DYNAMIC / RELATIVISTIC ASPECTS:
 - PRODUCTION OF NEW HADRONS WHEN THE SYSTEM IS SUFFICIENTLY EXCITED
 - STRING BREAKING / HADRONIZATION

DESCRIPTION OF MATTER

THE PHYSICAL DEGREES OF FREEDOM OF MATTER AT LOW SCALES ...

... ARE QUITE DIFFERENT FROM THE UNDERLYING BUILDING BLOCKS

IT WOULD BE VERY DESIRABLE TO HAVE A DIRECT CONNECTION OF THE PHYSICAL OBSERVABLES TO THE DYNAMICS OF THE FUNDAMENTAL LOCAL CONSTITUENTS LANDAU GAUGE: QUARKS, TRANSVERSE GLUONS & GHOSTS

7

SOME KIND OF CONSTRUCTION MANUAL ...

FUNCTIONAL METHODS & IR-ANALYSIS

DYSON-SCHWINGER EQ'S

IDEA: AN AVERAGE SHOULD NOT DEPEND ON THE WAY THE SUM IS PERFORMED:
(IN YM THEORY \$\overline\$ = (A, \vec{c}, \vec{c}))
\$\delta \lefta e^{J \cdot \overline\$} = \int D \overline\$ \frac{\delta}{\delta \overline\$} e^{-S[\overline\$]+J \cdot \overline\$ = 0

FORMULATION IN TERMS OF THE EFFECTIVE ACTION :

DSES FOR ARBITRARY GREEN FUNCTIONS OF A THEORY CAN BE OBTAINED ALGORITHMICALLY R. ALKOFER, M. HUBER AND K. S., CAN BE OBTAINED ALGORITHMICALLY COMP. PHYS. COMM. 180 (2009) 96

GLUON PROPAGATOR

GHOST PROPAGATOR

COUPLED NONLINEAR INTEGRAL EQUATIONS FOR THE PROPAGATORS

VERTEX DSES

PROPAGATOR DSES INVOLVE THE VERTICES

- INFINITELY COUPLED SYSTEM OF EQUATIONS
- IN GENERAL
 NO CONTROLLED
 APPROXIMATION SCHEME

3-GLUON VERTEX

GHOST-GLUON VERTEX (V1 & 2)

4-GLUON VERTEX

FUNCTIONAL HIERARCHIES

THE FUNCTIONAL EQUATIONS LOOK QUITE SIMILAR ... BUT THE DYNAMICS IS RESUMMED RATHER DIFFERENTLY:

RG	DSE							
INFINITE TOWER OF COUPLED FUNCTIONAL EQUATIONS FOR THE LOCAL GREEN FUNCTIONS OF THE THEORY								
INVOLVES CUTOFF, SUCCESSIVE MODE ELIM.	UNCONSTR. INTEGRATION, MODES ARE MIXED							
ONLY 1-LOOP GRAPHS & ONLY DRESSED VERTICES	UP TO 2-LOOP GRAPH (4D) & ONE BARE VERTEX							
ALL GRAPHS SCALE IDENTICALLY (CONF. CASE)	SUPPRESSIONS DUE TO BARE VERTEX							

IR-ANALYSIS

CONFINEMENT IS A LONG RANGE / IR PHENOMENON

CLASSICAL YANG-MILLS THEORY IS "CONFORMAL" BUT QUANTUM FLUCTUATIONS INDUCE A SCALE Λ_{QCD}

RENORMALIZATION GROUP (ASSUMPTION): FAR BELOW THIS SCALE GREENS FUNCTIONS ARE DESCRIBED BY SCALING

CANONICAL & ANOMALOUS IR-EXPONENT

CHARACTERISTIC MOMENTUM

FOR VERTICES KINEMATIC IR DIVERGENCES ARE POSSIBLE ... AND ALSO REALIZED R. ALKOFER, M. Q. HUBER AND K. S., ARXIV:0812.4045

IR SENSITIVE REGIONS

DECOMPOSED INTEGRALS DEPEND ON A SINGLE SCALE

 p_h

 \dot{p}_{s}

IR SENSITIVE REGIONS

When both hard p_h and soft p_s external momenta are present ($p_s \ll p_h, \Lambda_{QCD}, M$) ...

LOOP MOMENTA CONTRIBUTE: Loop ALL EXTERNAL

DIVIDE INTEGRAL INTO VARIOUS IR SENSITIVE REGIONS:

 $\longrightarrow p_s \ll \Lambda \ll p_h$

DECOMPOSED INTEGRALS DEPEND ON A SINGLE SCALE

IR SENSITIVE REGIONS

POWER COUNTING

THE PARAMETRIC IR-DEPENDENCE OF THE INTEGRALS ON A SINGLE EXTERNAL SCALE CAN BE OBTAINED VIA A POWER COUNTING ANALYSIS

WITHOUT NUMERICALLY SOLVING THE DSES

LEADING LOOP CORRECTION & LEADING TENSOR STRUCTURE DOMINATES AND DETERMINES SCALING OF THE VERTEX --> ALGEBRAIC EQUATIONS FOR EXPONENTS

E.G. GLUON DSE

 $p^{\mu} = \max(p^2, p^4)(p^2)$

 $\boxed{} \underbrace{}_{0} \underbrace{}_{-1} = \underbrace{}_{0} \underbrace{}_{-1} \underbrace{}_{2} \underbrace{}_{-1} \underbrace{}_{2} \underbrace{}_{0} \underbrace{}_{0} \underbrace{}_{0} \underbrace{}_{-1} \underbrace{}_{-1}$

 $\Rightarrow -\delta_{gl} = \min(0, \delta_{3g} + 2\delta_{gl}, \delta_{gg} + 2\delta_{gh})$ SYSTEM OF SUCH ALGEBRAIC EQUATIONS

IR TRUNCATION

- CANNOT SELF-CONSISTENTLY INDUCE NON-TRIVIAL IR POWER LAW SOLUTIONS
- THE IR FIXED POINT STRUCTURE IS DETERMINED BY THE PRIMITIVELY DIVERGENT GREENS FUNCTIONS

FUNCTIONAL CONSTRAINTS

THE FUNCTIONAL RENORMALIZATION GROUP FORMS A DISTINCT TOWER OF EQUATIONS THAT INVOLVE THE SAME GREEN FUNCTIONS BRD 75 (2007) 025012; BRD 30 (2009) 025023

BUT: ALL ARISING VERTICES ARE DRESSED

THE L.H.S. IS GIVEN BY THE LEADING TERM ON THE R.H.S., E.G. :

 $\delta_{gg} \le 2\delta_{gg} + \delta_{3g} + \delta_{gh} + 2\delta_{gl} \qquad \delta_{gg} \le 3\delta_{gg} + 2\delta_{gh} + \delta_{gl}$

YIELDS IMPORTANT CONSTRAINTS FOR THE DSE SYSTEM!

--> GHOST-GLUON VERTEX NOT IR ENHANCED

GAUGE SECTOR & GLUON CONFINEMENT

YANG-MILLS SECTOR

IR ANALYSIS

THE DSE SYSTEM FOR THE UNIFORM IR EXPONENTS ...

$$-\delta_{gh} = \min(0, \delta_{gg} + \delta_{gh} + \delta_{gl}) ,$$

$$-\delta_{gl} = \min(0, \delta_{3g} + 2\delta_{gl}, \delta_{gg} + 2\delta_{gh}, 2\delta_{3g} + 4\delta_{gl}, \delta_{4g} + 3\delta_{gl})$$

- $\delta_{gg} = \min(0, 2\delta_{gg} + 2\delta_{gh} + \delta_{gl}, \delta_{3g} + \delta_{gg} + \delta_{gh} + 2\delta_{gl})$
- $\delta_{3g} = \min(0, 2\delta_{gg} + 3\delta_{gh}, 2\delta_{3g} + 3\delta_{gl}, \delta_{3g} + 2\delta_{gl}, \delta_{4g} + 2\delta_{gl}, 3\delta_{3g} + 5\delta_{gl}, \delta_{4g} + \delta_{3g} + 4\delta_{gl})$
- $\delta_{4g} = \min(0, 3\delta_{gg} + 4\delta_{gh}, 3\delta_{3g} + 4\delta_{gl}, \delta_{4g} + 2\delta_{gl}, 2\delta_{3g} + 3\delta_{gl}, \delta_{4g} + \delta_{3g} + 3\delta_{gl}, 4\delta_{3g} + 6\delta_{gl}, \delta_{4g} + 2\delta_{3g} + 5\delta_{gl}$

$$\begin{aligned} -\delta_{gh} &= \min(0, \delta_{gh} + \delta_{gl}) , \\ -\delta_{gl} &= \min(0, 2\delta_{gh}) , \\ \delta_{gg} &= 0 , \\ \delta_{3g} &= \min(0, 3\delta_{gh}) , \\ \delta_{4g} &= \min(0, 4\delta_{gh}, 3\delta_{3g} + 4\delta_{gl}) \dots \text{SIMPLIFIES CONSIDERABLY!} \end{aligned}$$

UNIQUE SCALING SOLUTION OF THE DSE SYSTEM

R.ALKOFER, C.S.FISCHER AND F.J.LLANES-ESTRADA, PHYS. LETT. B 611 (2005) 279; C.S.FISCHER AND J.PAWLOWSKI, PHYS. REV. D 75 (2007) 025012

YANG-MILLS FIXED POINTS

Two QUALITATIVELY DIFFERENT IR SOLUTIONS -DEPENDING ON THE BOUNDARY CONDITIONS:

	δ_{gh}	δ_{gl}	δ^u_{gg}	δ^u_{3g}	δ^u_{4g}	δ^{gh}_{gg}	δ^{gl}_{gg}	δ^{gl}_{3g}
scaling	$-\kappa$	2κ	0	-3κ	-4κ	0	$\min\left(0, \frac{3}{2} - 2\kappa\right)$	$\min\left(0,1-2\kappa\right)$
decoupling	0	1	0	0	0	0	0	0

 $\kappa \approx 0.595$

R. ALKOFER, M. HUBER & K. S, ARXIV:0801.2862

DECOUPLING SCENARIO P.BOUCAUD, ET.AL., JHEP 0806 (2008) 012; A.C.AGUILAR, D.BINOSI, J.PAPAVASSILIOU, PRD 78 (2008) 025010; C.S.FISCHER, A. MAAS & J. PAWLOWSKI, ARXIV:0810.1987

MASSIVE IR GLUON PROPAGATOR

 \bigcirc

IR REGIME IS ENTIRELY SUPPRESSED!

SCALING SOLUTION L. V. SMEKAL, A. HAUCK & R. ALKOFER, PRL 79 (1997) 3591;
J. M. PAWLOWSKI, ET. AL., PRL 93 (2004) 152002; ...

STRONG IR ENHANCEMENT VIA GHOST DYNAMICS

GLUON CONFINEMENT VIA KUGO-OJIMA MECHANISM

SCALING SOLUTION

RECENT LATTICE DATA

QUENCHED QCD & QUARK CONFINEMENT

QUARK PROPAGATOR

ONLY DSE FOR THE QUARK PROPAGATOR CONSIDERED

Two different tensor structures in the IR regime

 $^{-1}$

• VECTOR PART $\sim \frac{p}{M^2}$ & SCALAR PART $\sim \frac{1}{M}$

 $^{-1}$

OYNAMICAL SPONTANEOUS CHIRAL SYMMETRY BREAKING IN THE PROPAGATOR

BUT: NO POSITIVITY VIOLATIONS AND NO STRONG GLUONIC DYNAMICS THAT INDUCE QUARK CONFINEMENT

R. ALKOFER & C. FISCHER PHYS. REV. D 67 (2003) 094020

DSES IN QUARK SECTOR

SYSTEM IN THE MATTER SECTOR:

IN QUENCHED APPROXIMATION: GAUGE RESULTS AS AN INPUT

PECULIARITY OF THE DSE SYSTEM:

- ONE BARE VERTEX IN EACH DSE
- QUARKS & GHOSTS DON'T COUPLE AT TREE LEVEL
- QUARK-GHOST DSE HAS TO BE INCLUDED
- EFFECTIVELY DRESSED NON-ABELIAN GRAPH AS IN RG

DYNAMICAL VERTICES

THE NON-ÅBELIAN GRAPH INDUCES A NON-LINEARITY IN THE QUARK-GLUON VERTEX DSE & F.J.LLANES-ESTRADA, --> SELF-CONSISTENT ENHANCEMENT MOD. PHYS. LETT. A 23 (2008) 110

IR SINGULARITY OF THE QUARK-GLUON VERTEX:

 $\Gamma_{qg} \sim (p^2)^{o_{qg}} \qquad \delta_{qg} = -\frac{1}{2} - \kappa$ SAME STRONG IR-SINGULARITY
IN THE SOFT GLUON LIMIT FOR
ARBITRARY QUARK KINEMATICS

R. Alkofer R. Alkofer, C.S. Fischer, F. Llanes-Estrada & K. S. Annals Phys. 324, 106 (2009)

DYNAMICAL VERTICES

THE NON-ÅBELIAN GRAPH INDUCES A NON-LINEARITY IN THE QUARK-GLUON VERTEX DSE & F.J.LLANES-ESTRADA, --> SELF-CONSISTENT ENHANCEMENT MOD. PHYS. LETT. A 23 (2008) 110

IR SINGULARITY OF THE QUARK-GLUON VERTEX:

 $\Gamma_{qg} \sim (p^2)^{o_{qg}} \qquad \delta_{qg} = -\frac{1}{2} - \kappa$ SAME STRONG IR-SINGULARITY
IN THE SOFT GLUON LIMIT FOR
ARBITRARY QUARK KINEMATICS

s o s b h h

S

R. Alkofer R. Alkofer, C.S. Fischer, F. Llanes-Estrada & K. S. Annals Phys. 324, 106 (2009)

SOFT SINGULARITY PROVIDES MECHANISM FOR $U_A(1)$ ANOMALY & η / η' MASS SPLITTING R. Alkofer, C. S. Fischer & R. Williams, EPJ A 38 (2008) 53

QUENCHED SOLUTION

IR FIXED POINTS OF QUENCHED QCD:

STRONG, SELF-CONSISTENTLY ENHANCED SINGULARITIES IN THE QUARK-GLUON VERTEX - EVEN WHEN ONLY THE GLUON MOMENTUM VANISHES!

SECOND SOLUTION WITHOUT ENHANCED VERTEX

KINEMATIC CASE IMPORTANT BECAUSE:

VALENCE QUARKS ONLY IR IN A HADRONS SENSITIVE HAVE FINITE QUARK-QUARK MOMENTA ... INTERACTION

STATIC CONFINEMENT

QUARK-GLUON VERTEX INDUCES STRONGLY SINGULAR QUARK-QUARK INTERACTION

 $\Gamma_{4q} \sim (p^2)^{2\kappa - 1 + 2(-1/2 - \kappa)} = p^{-4}$

• 4-QUARK VERTEX LOWEST ORDER IN THE EXPANSION OF THE GAUGE INVARIANT CORRELATOR INCLUDING A WILSON LINE

★ QUARK CONFINEMENT DUE TO LINEAR POTENTIAL WHENEVER THE STATIC QUARKS ARE FAR APART AND THE GLUON IS SOFT

IR SLAVERY: DIFFERENT MECHANISM THAN FOR GLUONS

REALIZATION IN 1PI DSE

4-QUARK DSE SHOULD ENCODE MESON CONFINEMENT

1-LOOP GLUON EXCHANGE IS SUPPRESSED SINCE THERE IS ALWAYS ONE BARE VERTEX $\sim (p^2)^{2+3}(-\frac{1}{2}-\kappa)+2(-1+2\kappa)}=p^{-3+2\kappa}$

• BUT ... THE 2-LOOP CONTRIBUTION FROM THE HIGHER ORDER DSE IS MORE IR SINGULAR $\sim (p^2)^{2+4\left(-\frac{1}{2}-\kappa\right)+2(-1+2\kappa)} = p^{-4}$

STRONG IR-DIVERGENCE IN ACCORDANCE TO NPI / RG

UNIVERSAL MECHANISM

QUENCHED QCD PROVIDES CONFINING POTENTIAL

- FERMION DETERMINANT ENTIRELY NEGLECTED IN QUENCHED LATTICE STUDIES - NO QUARK DYNAMICS ...
- ... YET, QUARKS ARE PRESENT IN THE DSE TREATMENT
- SAME RESULT FOR A THEORY WHERE THE MATTER FIELDS ARE FUNDAMENTALLY CHARGED SCALARS

L. FISTER, R. ALKOFER & K. S.

MUCH SIMPLER THEORY (MODEL SYSTEM) --> LATTICE

THE CONFINEMENT MECHANISM IS A PROPERTY OF THE GAUGE DYNAMICS AND NOT OF THE MATTER SECTOR!

DYNAMICAL QCD & Screening

UNQUENCHED QCD

COUPLED SYSTEM OF EQUATIONS OF THE GAUGE AND MATTER SECTOR

- UNQUENCHING EFFECTS VIA CLOSED QUARK LOOPS
- INTRODUCE THE QUARK MASSES m_i

• SYSTEM OF COUPLED NON-LINEAR EQUATIONS FOR 18 IR EXPONENTS: $\delta_{gl}, \delta_{gh}, \delta_q, \delta^u_{qg}, \delta^{gl}_{qg}, \dots$

UNQUENCHED QCD

 COUPLED SYSTEM OF MATTER SEC
 MATTER SEC
 MATTER SEC
 Munquencies
 Unquencies
 EFFECTS V

QUARK LOO

INTRODUCE QUARK MASS

HE GAUGE AND

OF COUPLED EAR NS FOR 18 ENTS: $\delta^{u}_{qg}, \delta^{gl}_{qg}, \dots$

DYNAMICAL SCREENING

- A STRONG SOFT DIVERGENCE IS NOT COMPATIBLE WITH THE YANG-MILLS SCALING SOLUTION
 - IT WOULD CONTRIBUTE IN THE UNQUENCHING DIAGRAMS EVEN FOR LARGE LOOP MOMENTA OF THE ORDER OF THE QUARK MASS AND DOMINATE OVER THE LEADING GHOST LOOP
 - SIGNALIZES
 SCREENING OF THE INTERACTION

FINITE MASS QCD CANNOT BE ASYMPTOTICALLY CONFINING BUT ONLY AS LONG AS THE ENERGY OF THE SYSTEM IS FAR BELOW THE QUARK MASSES

FIXED POINTS OF QCD

FIXED POINT STRUCTURE DEPENDS ON THE QUARK MASS:

		δ_{gh}	δ_{gl}	δ_q	δ^u_{gg}	δ^{gl}_{gg}	δ^{gh}_{gg}	δ^u_{3g}	δ^{gl}_{3g}	δ^u_{qg}	δ^{gl}_{qg}	$\left \delta^q_{qg} \right $
scaling	static $(m_q \to \infty)$ / quenched	$ -\kappa $	2κ	- / 0	0	0	0	-3κ	$\min(0,1\!-\!2\kappa)$	$-/-\frac{1}{2}-\kappa \vee 0$	$-\frac{1}{2}-\kappa \vee 0$	0
	massive $(m_q > 0, m_q^0 \ge 0)$	$ -\kappa $	2κ	0	0	0	0	-3κ	$\min(0,1\!-\!2\kappa)$	$-\frac{1}{2}-\kappa \lor 0$	0	0
	chiral $(m_q = m_q^0 = 0)$	$\left -\kappa\right $	2κ	$-\frac{1}{2}$	0	0	0	-3κ	$\min(0,1\!-\!2\kappa)$	$-\kappa \lor 0$	0	0
decoupling	$(orall m_q)$	0	1	$-rac{1}{2}$ \lor 0	0	0	0	0	0	0	0	0
perturbative	$(\forall m_q, \text{ both IR \& UV})$	0	0	$-rac{1}{2}$ \lor 0	0	0	0	0	0	0	0	0

GAUGE SECTOR IS UNCHANGED BY THE QUARK DYNAMICS

QUARK-GLUON VERTEX IN DYNAMICAL QCD

- CONFINING INTERACTION IS SCREENED PRECISELY AT SCALES OF THE ORDER OF THE QUARK MASS
- HAS THE POTENTIAL TO DESCRIBE STRING BREAKING & HADRONIZATION ... BUT COLOR CAN STILL BE

HEAVY QUARK POTENTIAL $(\Lambda_{QCD} \ll m_q < \infty)$

HEAVY QUARK POTENTIAL $(\Lambda_{QCD} \ll m_q < \infty)$

HEAVY QUARK POTENTIAL $(\Lambda_{QCD} \ll m_q < \infty)$

HEAVY QUARK POTENTIAL

 $(\Lambda_{QCD} \ll m_q < \infty)$

MASSIVE IR FIXED POINT: SCREENED BY QUARK LOOPS POTENTIAL BREAKS DOWN

• STATIC IR FIXED POINT: VALID FOR $V \sim \sigma x \ll 2m_q$ LINEAR CONFINING POTENTIAL

PERTURBATIVE UV FIXED POINT: APPLIES FOR $x \ll 1/\Lambda_{QCD}$ COULOMB PART (1-GLUON EXCHANGE)

00000 () 00000

• For $p_g \gtrsim m_q \Rightarrow x \lesssim 1/m_q$ heavy quark picture not valid

★ FIXED POINTS DETERMINE COMPLETE QUALITATIVE FORM ANALYTICALLY AND BEYOND THE STRONG COUPLING LIMIT

CONCLUSION & OUTLOOK

- SIMPLE DYNAMICAL MECHANISM FOR QUARK CONFINEMENT IN LANDAU GAUGE QCD BASED ON IR-SCALING FIXED POINTS
 - RELIES ON SOFT-GLUON SINGULARITIES OF VERTEX
 - EXPLAINS BOTH STATIC AND RELATIVISTIC ASPECTS
- COHERENT PICTURE OF THE QCD VACUUM
 - CHIRAL SYMMETRY BREAKING & CONFINEMENT
 - SPONTANEOUS & ANOMALOUS MASS GENERATION
- GOAL: BOUND STATES & COLOR CONFINEMENT
- How to do the same within an RG-analysis?