RG for nuclear forces and nuclear structure

Vesmo Alfred And Achim Schwenk

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS *Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada*

INT RG Workshop, Feb. 23, 2010 - schwenk@triumf.ca

Strong interaction physics in the lab and cosmos

Matter at the extremes:

density $\rho \sim$...10¹⁵ g/cm³

proton-rich, neutron-rich, 8 He to Z/N ~0.05

temperatures $T \sim$... 100 MeV

Outline

RG evolution for nuclear forces

Applications to neutron-rich nuclei and neutron stars

RG for many-body problems

Λ / Resolution dependence of nuclear forces with high-energy probes: quarks+gluons

Effective theory for NN, 3N, many-N interactions and electroweak operators: resolution scale/Λ-dependent

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \ldots$

Λ_{chiral}

 $<< m_{\pi}$

pionless

momenta $Q \sim \lambda^{-1} \sim m_{\pi}$: chiral effective field theory (EFT) neutrons and protons interacting via pion exchanges and shorter-range contact interactions

typical momenta in nuclei $\sim m_{\pi}$

Λ / Resolution dependence of nuclear forces with high-energy probes: quarks+gluons

Effective theory for NN, 3N, many-N interactions and electroweak operators: resolution scale/Λ-dependent

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \ldots$

 Λ_{chiral} momenta $Q \sim \lambda^{-1} \sim m_{\pi}$

> universal properties of neutrons and cold atoms, reactions at astrophysical energies, loosely-bound halo nuclei,…

 $Q \ll m_{\pi}$: pionless effective field theory large scattering length physics and corrections Λpionless

Chiral EFT for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner,…

Chiral EFT for nuclear forces

Nuclear forces and the Renormalization Group RG evolution to lower resolution/cutoffs

$$
H(\Lambda) = T + V_{\text{NN}}(\Lambda) + V_{3\text{N}}(\Lambda) + V_{4\text{N}}(\Lambda) + \dots
$$

\nexact RG for NN interactions
\nBogner, Kuo, AS, Furnstahl, ...
\n $k^2 \text{ (fm}^2)$
\n 0.5
\n $\frac{1}{2}$
\n $1 - (k/\Lambda)^2$
\n 0.5
\n $\frac{1}{2}$
\n 12
\n $\frac{1}{2}$
\n $\frac{1}{2}$
\n 12
\n $\frac{1}{2}$
\n $\frac{1}{2}$

 Λ =2.0 fm $^{\circ}$.

 $A = 1.5$ fm $^{\circ}$

 -0.5

low-momentum interactions $V_{low k}(\Lambda)$ with sharp or smooth regulators

 $A = 3.0$ fm⁻¹

decouples low-momentum physics from high momenta (red=short-range repulsion and short-range tensor parts)

 Λ =4.0 fm \prime

Low-momentum universality

 \approx universality from different phenomenological potentials RG preserves NN observables and long-range parts

 \approx universality from different chiral N³LO potentials RG preserves NN observables and long-range parts What drives this universality? RG basis?

Chiral EFT and RG

Similarity RG

unitary transformations to band-diagonal $V_{srg}(\lambda)$ from flow equations Glazek, Wilson (1993), Wegner (1994)

$$
\frac{dH_s}{ds}=[\eta_s,H_s]=[[G_s,H_s],H_s]
$$

evolution driven towards nonzero part of generator $G_{\rm s}$

with flow operator $G_s = T_{rel}$ and resolution $\lambda = s^{-1/4}$ Bogner, Furnstahl, Perry,…

SRG decouples high momenta with similar low-momentum universality

Block diagonalization using SRG

low-momentum blocks very similar to $V_{\text{low }k}$

formal equivalence? SRG is exact at second-order in the (tree-level) potential

SRG connections to EFT?

Advantages of low-momentum interactions for nuclei

high momenta/large cutoffs lead to slow convergence for nuclei

lower cutoffs need smaller basis

improved convergence for nuclei Bogner et al. (2008)

 10^3 states for $N_{\text{max}}=2$ vs. -10 max $\lambda = 1.5$ fm⁻¹ Ground-State Energy MeV
 -15
 -15
 -10
 -15
 -15
 -20
 -25 ₹N $=4$ 10^7 states for $N_{\text{max}}=10$ $= 6$ $= 8$ \blacksquare $\mathbf{N}_{\max} = 10$ $\lambda = 3.0$ fm 6 He $\lambda = 2.0 \text{ fm}^{-1}$ $\lambda=1.0~\mathrm{fm}^{-1}$ -25 $-30E$ 25 30 5 10 15 20 10 15 20 25 $\hbar\Omega$ [MeV] $\hbar\Omega$ [MeV]

Chiral EFT for 3N forces

Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll A_{\rm b}$ breakdown scale ~500 MeV NN 3N consistent NN-3N interactions LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ $3N,4N$: only 2 new couplings to $N³LO$ leading 3N: N2LO van Kolck (1994), Epelbaum et al. (2002)NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ c_1, c_3, c_4 c_D c_E c_i from πN and NN from Meissner (2007) N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ $\left| \, c_1 = -0.9^{+0.2}_{-0.5} \, , \, c_3 = -4.7^{+1.2}_{-1.0} \, , \; \; c_4 = 3.5^{+0.5}_{-0.2} \, .$ single- Δ excitation = particular c_i N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ c_D , c_E fit to ³H binding energy and ⁴He radius (or ³H beta decay half-life)

Towards the limits of existence - the neutron drip-line

The oxygen anomaly

The oxygen anomaly - not reproduced without 3N forces

The oxygen anomaly - impact of 3N forces

include normal-ordered 2-body part of 3N forces (enhanced by core A)

leads to repulsive interactions between valence neutrons (repulsive based on the Pauli principle)

 $d_{3/2}$ orbital remains unbound

first microscopic explanation of the oxygen anomaly Otsuka, Suzuki, Holt, AS, Akaishi (2009)

Weinberg eigenvalue diagnostic

study spectrum of $G_0(z)V|\Psi_{\nu}(z)\rangle = \eta_{\nu}(z)|\Psi_{\nu}(z)\rangle$ at fixed energy z governs convergence $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ can write as Schrödinger equation $(H_0 + \frac{1}{n\mu(z)}) |\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$

high momenta/large cutoffs lead to flipped-potential bound states of $-\lambda V$ for small λ /large $\eta \rightarrow$ strong coupling to high momenta/short range and Born series always nonperturbative

RG evolution decouples high momenta (short-range repulsion and tensor parts)

Is nuclear matter perturbative with chiral EFT and RG?

conventional Bethe-Brueckner-Goldstone expansion (sums ladders): no, due to nonpert. cores (flipped-V bound states) and off-diag coupling

conventional G-matrix approach does not solve off-diagonal coupling

Is nuclear matter perturbative with chiral EFT and RG?

conventional Bethe-Brueckner-Goldstone expansion (sums ladders): no, due to nonpert. cores (flipped-V bound states) and off-diag coupling start from chiral EFT and RG evolution: nuclear matter converged at \approx 2nd order, 3N drives saturation

weak cutoff dependence, but need to improve 3N treatment

exciting: empirical saturation within theoretical uncertainties

Impact of 3N interactions on neutron matter

Chiral Effective Field Theory for 3N forces Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll A_{\rm b}$ breakdown scale ~500 MeV NN 3N consistent NN-3N interactions LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ $3N,4N$: only 2 new couplings to $N³LO$ leading 3N: N2LO van Kolck (1994), Epelbaum et al. (2002)NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ c_1, c_3, c_4 c_D c_E c_i from πN and NN from Meissner (2007) N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ $\left| \, c_1 = -0.9^{+0.2}_{-0.5} \, , \, c_3 = -4.7^{+1.2}_{-1.0} \, , \; \; c_4 = 3.5^{+0.5}_{-0.2} \, .$ single- Δ excitation = particular c_i N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ c_D , c_E fit to ³H binding energy and ⁴He radius (or 3 H beta decay half-life)

Impact of 3N interactions on neutron matter

Impact on neutron stars

uncertainty band for pressure, leads to neutron star masses and radii (with general two polytrope extension to higher densities)

In-medium SRG for nuclei

$$
H = \sum_{12} T_{12} a_1^{\dagger} a_2 + \frac{1}{(2!)^2} \sum_{1234} \langle 12|V|34 \rangle a_1^{\dagger} a_2^{\dagger} a_4 a_3 + \frac{1}{(3!)^2} \sum_{123456} \langle 123|V^{(3)}|456 \rangle a_1^{\dagger} a_2^{\dagger} a_3^{\dagger} a_6 a_5 a_4
$$

normal-order Hamiltonian with respect to reference state (e.g., Hartree-Fock ground state)

$$
H=E_0+\sum_{12}f_{12}\{a_1^{\dagger}a_2\}+\frac{1}{(2!)^2}\sum_{1234}\langle12|\Gamma|34\rangle\{a_1^{\dagger}a_2^{\dagger}a_4a_3\}+\frac{1}{(3!)^2}\sum_{123456}\langle123|\Gamma^{(3)}|456\rangle\{a_1^{\dagger}a_2^{\dagger}a_3^{\dagger}a_6a_5a_4\}
$$

with 0-, 1- and 2-body normal-ordered parts

$$
E_0 = \langle \Phi | H | \Phi \rangle = \sum_{1} T_{11} n_1 + \frac{1}{2} \sum_{12} \langle 12 | V | 12 \rangle n_1 n_2 + \frac{1}{3!} \sum_{123} \langle 123 | V^{(3)} | 123 \rangle n_1 n_2 n_3
$$

\n
$$
f_{12} = T_{12} + \sum_{i} \langle 1i | V | 2i \rangle n_i + \frac{1}{2} \sum_{ij} \langle 1ij | W | 2ij \rangle n_i n_j ,
$$

\n
$$
\langle 12 | \Gamma | 34 \rangle = \langle 12 | V | 34 \rangle + \sum_{i} \langle 12i | V^{(3)} | 34i \rangle n_i ,
$$

In-medium SRG for nuclei

$$
H = \sum_{12} T_{12} a_1^{\dagger} a_2 + \frac{1}{(2!)^2} \sum_{1234} \langle 12|V|34 \rangle a_1^{\dagger} a_2^{\dagger} a_4 a_3 + \frac{1}{(3!)^2} \sum_{123456} \langle 123|V^{(3)}|456 \rangle a_1^{\dagger} a_2^{\dagger} a_3^{\dagger} a_6 a_5 a_4
$$

normal-order Hamiltonian with respect to reference state (e.g., Hartree-Fock ground state)

$$
H=E_0+\sum_{12}f_{12}\{a_1^{\dagger}a_2\}+\frac{1}{(2!)^2}\sum_{1234}\langle12|\Gamma|34\rangle\{a_1^{\dagger}a_2^{\dagger}a_4a_3\}+\frac{1}{(3!)^2}\sum_{123456}\langle123|\Gamma^{(3)}|456\rangle\{a_1^{\dagger}a_2^{\dagger}a_3^{\dagger}a_6a_5a_4\}
$$

with 0-, 1- and 2-body normal-ordered parts and in-medium SRG eqns e.g., for nuclear matter with $\eta = [f, \Gamma]$ see Bogner et al., Kehrein (2006)

$$
\frac{dE_0}{ds} = \frac{1}{2} \sum_{1234} (f_{12} - f_{34}) |\Gamma_{1234}|^2 n_1 n_2 \bar{n}_3 \bar{n}_4,
$$
\n
$$
\frac{df_1}{ds} = \sum_{234} (f_{41} - f_{23}) |\Gamma_{4123}|^2 (\bar{n}_2 \bar{n}_3 n_4 + n_2 n_3 \bar{n}_4),
$$
\n
$$
\frac{d\Gamma_{1234}}{ds} = -(f_{12} - f_{34})^2 \Gamma_{1234} + \frac{1}{2} \sum_{ab} (f_{12} + f_{34} - 2f_{ab}) \Gamma_{12ab} \Gamma_{ab34} (1 - n_a - n_b) + \sum_{ab} (n_a - n_b)
$$
\n
$$
\times \left\{ \Gamma_{a1b3} \Gamma_{b2a4} [(f_{a1} - f_{b3}) - (f_{b2} - f_{a4})] - \Gamma_{a2b3} \Gamma_{b1a4} [(f_{a2} - f_{b3}) - (f_{b1} - f_{a4})] \right\},
$$
\n
$$
approx. \text{ includes many-body forces and sums pp, hh, ph diagrams}
$$

In-medium SRG for nuclei Tsukiyama, Bogner, AS, in prep. decouple 1p1h, 2p2ph,… ApAh sectors from reference state want to suppress pphh and ph couplings,

all other (normal-ordered) couplings annihilate reference state

minimal choice: $\eta(s) = [H^d(s), H(s)] = [H^d(s), H^{od}(s)]$

$$
H^{od}(s) = g^{od}(s) + \Gamma^{od}(s)
$$

$$
\Gamma^{od}(s) = \sum_{pp'hh'} \Gamma_{pp'hh'}(s) a_p^{\dagger} a_{p'}^{\dagger} a_{h} a_{h'} + h.c.
$$

In-medium SRG for nuclei Tsukiyama, Bogner, AS, in prep.

can be used to derive nonperturbative valence-shell effective interactions

Braun, Polonyi, AS, in prep.
density functional:
$$
\Gamma[\rho] = \ln \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S[\psi^{\dagger}, \psi] + \int J \cdot (\psi^{\dagger} \psi)}
$$

with $S[\psi^{\dagger}, \psi] = \int \psi^{\dagger} \Big[\partial_t - \frac{1}{2m} \Delta \Big] \psi + \frac{1}{2} \int \psi^{\dagger} \psi V_{2b} \psi^{\dagger} \psi + V_{3b}$

main idea:

start from mean-field (background potential) and include interactions

introduce background potential U into the path integral

density functional:
$$
\Gamma_{\lambda}[\rho] = \ln \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi \, e^{-S_{\lambda}[\psi^{\dagger}, \psi] + \int J \cdot (\psi^{\dagger} \psi)}
$$

with
$$
S_{\lambda}[\psi^{\dagger}, \psi] = \int \psi^{\dagger} \Big[\partial_t - \frac{1}{2m} \Delta + (1 - \lambda) U_{\lambda} \Big] \psi + \frac{1}{2} \int \psi^{\dagger} \psi \lambda V_{2b} \psi^{\dagger} \psi + \lambda V_{3b}
$$

(auxiliary) background potential or (physical) trap potential

leads to flow equation

$$
\partial_{\lambda} \Gamma_{\lambda}[\rho] = \left[-U_{\lambda} + (1-\lambda) \partial_{\lambda} U_{\lambda} \right] \cdot \rho + \frac{1}{2} \rho \cdot V_{2b} \cdot \rho + \frac{1}{2} \operatorname{Tr} \left[V_{2b} \cdot \left(\frac{\delta^2 \Gamma_{\lambda}[\rho]}{\delta \rho \delta \rho} \right)^{-1} \right]
$$

introduce kinetic and exchange-correlation part $\tilde{\Gamma}_{\lambda}$:

$$
\Gamma_{\lambda}[\rho] = (1 - \lambda)U_{\lambda} \cdot \rho + \frac{\lambda}{2} \rho \cdot V_{2b} \cdot \rho + \tilde{\Gamma}_{\lambda}[\rho]
$$

density functional:
$$
\Gamma_{\lambda}[\rho] = \ln \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi \, e^{-S_{\lambda}[\psi^{\dagger}, \psi] + \int J \cdot (\psi^{\dagger} \psi)}
$$

with $S_{\lambda}[\psi^{\dagger}, \psi] = \int \psi^{\dagger} \Big[\partial_t - \frac{1}{2m} \Delta + (1 - \lambda) U_{\lambda} \Big] \psi + \frac{1}{2} \int \psi^{\dagger} \psi \lambda V_{2b} \psi^{\dagger} \psi + \lambda V_{3b}$

main idea:

start from mean-field (background potential) and include interactions

$$
\partial_\lambda \tilde{\Gamma}_\lambda[\rho]=\frac{1}{2}\,V_{2\mathrm{b}}\bigg\{\!\!\!\bigg\}
$$

start from mean-field (background potential) and include interactions currently: comparison to MC results for 1d model Alexandrou et al. (1989)

$$
V_{\rm 2b}(x)=\sum_{i=1}^2\frac{V_i}{\sigma_i\sqrt{\pi}}{\rm e}^{-\frac{x^2}{\sigma_i^2}}
$$

density basis expansion scales favorably to heavy nuclei

benchmark results for real nuclei^{0.2} with coupled-cluster theory

Thanks to collaborators

Summary

Exciting era with advances on many fronts: EFT and RG

For the first time, approaches from light to heavy nuclei and for astrophysics based on the same interactions

Three-nucleon interactions are a frontier: they impact the structure and existence of neutron-rich nuclei and neutron-rich matter in astrophysics

Exciting intersections with problems in many related areas