RG for nuclear forces and nuclear structure

Achim Schwenk

INT RG Workshop, Feb. 23, 2010 - schwenk@triumf.ca

Strong interaction physics in the lab and cosmos

Matter at the extremes:

density $\rho\sim \ldots 10^{15}~g/cm^3$

proton-rich, neutron-rich, ⁸He to Z/N \sim 0.05

temperatures T $\sim ... 100 \text{ MeV}$

Outline

RG evolution for nuclear forces

Applications to neutron-rich nuclei and neutron stars

RG for many-body problems

Λ / Resolution dependence of nuclear forces with high-energy probes: quarks+gluons

Effective theory for NN, 3N, many-N interactions and electroweak operators: resolution scale/ Λ -dependent

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$

Λ_{chiral}

momenta Q ~ λ^{-1} ~ m_{\pi}: chiral effective field theory (EFT) neutrons and protons interacting via pion exchanges and shorter-range contact interactions

typical momenta in nuclei $\sim m_{\pi}$

 $\Lambda_{\text{pionless}}$ Q << m_{π}

Λ / Resolution dependence of nuclear forces with high-energy probes: quarks+gluons

Effective theory for NN, 3N, many-N interactions and electroweak operators: resolution scale/ Λ -dependent

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$

 Λ_{chiral} momenta Q ~ λ^{-1} ~ m_{π}

> universal properties of neutrons and cold atoms, reactions at astrophysical energies, loosely-bound halo nuclei,...

 $\Lambda_{\text{pionless}}$ Q << m_{\pi}: pionless effective field theory large scattering length physics and corrections

Chiral EFT for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner,...

Chiral EFT for nuclear forces

Nuclear forces and the Renormalization Group RG evolution to lower resolution/cutoffs

$$H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$$

exact RG for NN interactions Bogner, Kuo, AS, Furnstahl, ...

low-momentum interactions $V_{low k}(\Lambda)$ with sharp or smooth regulators

decouples low-momentum physics from high momenta (red=short-range repulsion and short-range tensor parts)

Low-momentum universality

 \approx universality from different phenomenological potentials RG preserves NN observables and long-range parts

≈ universality from different chiral N³LO potentials
 RG preserves NN observables and long-range parts
 What drives this universality? RG basis?

Chiral EFT and RG

Similarity RG

unitary transformations to band-diagonal $V_{srg}(\lambda)$ from flow equations Glazek, Wilson (1993), Wegner (1994)

$$\frac{dH_s}{ds} = [\eta_s, H_s] = [[G_s, H_s], H_s]$$

evolution driven towards nonzero part of generator G_s

with flow operator $G_s = T_{rel}$ and resolution $\lambda = s^{-1/4}$ Bogner, Furnstahl, Perry,...

SRG decouples high momenta with similar low-momentum universality

Block diagonalization using SRG

low-momentum blocks very similar to $V_{low k}$

formal equivalence? SRG is exact at second-order in the (tree-level) potential

SRG connections to EFT?

Advantages of low-momentum interactions for nuclei

high momenta/large cutoffs lead to slow convergence for nuclei

lower cutoffs need smaller basis

improved convergence for nuclei Bogner et al. (2008)

Chiral EFT for 3N forces Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll \Lambda_{\rm b}$ breakdown scale ~500 MeV NN **3**N consistent **NN-3N** interactions LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ 3N,4N: only 2 new couplings to $N^{3}LO$ leading 3N: N²LO van Kolck (1994), Epelbaum et al. (2002) NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ π c_1, c_3, c_4 c_D CE c_i from πN and NN from Meissner (2007) N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ $c_1 = -0.9^{+0.2}_{-0.5} \,, \, c_3 = -4.7^{+1.2}_{-1.0} \,, \,\, c_4 = 3.5^{+0.5}_{-0.2}$ single- Δ excitation = particular c_i N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ c_D , c_E fit to ³H binding energy and ⁴He radius (or ³H beta decay half-life)

Towards the limits of existence - the neutron drip-line

The oxygen anomaly

The oxygen anomaly - not reproduced without 3N forces

The oxygen anomaly - impact of 3N forces

include normal-ordered 2-body part of 3N forces (enhanced by core A)

leads to repulsive interactions between valence neutrons (repulsive based on the Pauli principle)

d_{3/2} orbital remains unbound

first microscopic explanation of the oxygen anomaly Otsuka, Suzuki, Holt, AS, Akaishi (2009)

Weinberg eigenvalue diagnostic

study spectrum of $G_0(z)V |\Psi_{\nu}(z)\rangle = \eta_{\nu}(z) |\Psi_{\nu}(z)\rangle$ at fixed energy z governs convergence $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ can write as Schrödinger equation $\left(H_0 + \frac{1}{\eta_{\nu}(z)}V\right) |\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$

high momenta/large cutoffs lead to flipped-potential bound states of $-\lambda V$ for small λ /large $\eta \rightarrow$ strong coupling to high momenta/short range and Born series always nonperturbative

RG evolution decouples high momenta (short-range repulsion and tensor parts)

Is nuclear matter perturbative with chiral EFT and RG? conventional Bethe-Brueckner-Goldstone expansion (sums ladders): no, due to nonpert. cores (flipped-V bound states) and off-diag coupling

conventional G-matrix approach does not solve off-diagonal coupling

Is nuclear matter perturbative with chiral EFT and RG?

conventional Bethe-Brueckner-Goldstone expansion (sums ladders): no, due to nonpert. cores (flipped-V bound states) and off-diag coupling start from chiral EFT and RG evolution: nuclear matter converged at \approx 2nd order, 3N drives saturation

weak cutoff dependence, but need to improve 3N treatment

exciting: empirical saturation within theoretical uncertainties

Bogner, AS, Furnstahl, Nogga (2009)

Impact of 3N interactions on neutron matter

Chiral Effective Field Theory for 3N forces Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll \Lambda_{\rm b}$ breakdown scale ~500 MeV NN **3**N consistent <u>NN-3N</u> interactions LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ 3N,4N: only 2 new couplings to $N^{3}LO$ leading 3N: N²LO van Kolck (1994), Epelbaum et al. (2002) NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ π c_1, c_3, c_4 c_D CE c_i from πN and NN from Meissner (2007) N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ $c_1 = -0.9^{+0.2}_{-0.5} \,, \, c_3 = -4.7^{+1.2}_{-1.0} \,, \,\, c_4 = 3.5^{+0.5}_{-0.2}$ single- Δ excitation = particular c_i N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ c_D , c_E fit to ³H binding energy and ⁴He radius (or ³H beta decay half-life)

Impact of 3N interactions on neutron matter

Impact on neutron stars

uncertainty band for pressure, leads to neutron star masses and radii (with general two polytrope extension to higher densities)

In-medium SRG for nuclei

normal-order Hamiltonian with respect to reference state (e.g., Hartree-Fock ground state)

$$H = E_0 + \sum_{12} f_{12} \{ a_1^{\dagger} a_2 \} + \frac{1}{(2!)^2} \sum_{1234} \langle 12|\Gamma|34 \rangle \{ a_1^{\dagger} a_2^{\dagger} a_4 a_3 \} + \frac{1}{(3!)^2} \sum_{123456} \langle 123|\Gamma^{(3)}|456 \rangle \{ a_1^{\dagger} a_2^{\dagger} a_3^{\dagger} a_6 a_5 a_4 \}$$

with 0-, 1- and 2-body normal-ordered parts

$$\begin{split} E_{0} &= \langle \Phi | H | \Phi \rangle = \sum_{1} T_{11} n_{1} + \frac{1}{2} \sum_{12} \langle 12 | V | 12 \rangle n_{1} n_{2} + \frac{1}{3!} \sum_{123} \langle 123 | V^{(3)} | 123 \rangle n_{1} n_{2} n_{3} \\ f_{12} &= T_{12} + \sum_{i} \langle 1i | V | 2i \rangle n_{i} + \frac{1}{2} \sum_{ij} \langle 1ij | W | 2ij \rangle n_{i} n_{j} , \\ \langle 12 | \Gamma | 34 \rangle &= \langle 12 | V | 34 \rangle + \sum_{i} \langle 12i | V^{(3)} | 34i \rangle n_{i} , \end{split}$$

In-medium SRG for nuclei

normal-order Hamiltonian with respect to reference state (e.g., Hartree-Fock ground state)

$$H = E_0 + \sum_{12} f_{12} \{ a_1^{\dagger} a_2 \} + \frac{1}{(2!)^2} \sum_{1234} \langle 12 | \Gamma | 34 \rangle \{ a_1^{\dagger} a_2^{\dagger} a_4 a_3 \} + \frac{1}{(3!)^2} \sum_{123456} \langle 123 | \Gamma^{(3)} | 456 \rangle \{ a_1^{\dagger} a_2^{\dagger} a_3^{\dagger} a_6 a_5 a_4 \}$$

with 0-, 1- and 2-body normal-ordered parts and in-medium SRG eqns e.g., for nuclear matter with $\eta = [f, \Gamma]$ see Bogner et al., Kehrein (2006)

$$\begin{aligned} \frac{dE_0}{ds} &= \frac{1}{2} \sum_{1234} (f_{12} - f_{34}) |\Gamma_{1234}|^2 n_1 n_2 \bar{n}_3 \bar{n}_4 ,\\ \frac{df_1}{ds} &= \sum_{234} (f_{41} - f_{23}) |\Gamma_{4123}|^2 (\bar{n}_2 \bar{n}_3 n_4 + n_2 n_3 \bar{n}_4) ,\\ \frac{d\Gamma_{1234}}{ds} &= -(f_{12} - f_{34})^2 \Gamma_{1234} + \frac{1}{2} \sum_{ab} (f_{12} + f_{34} - 2f_{ab}) \Gamma_{12ab} \Gamma_{ab34} (1 - n_a - n_b) + \sum_{ab} (n_a - n_b) \\ &\times \left\{ \Gamma_{a1b3} \Gamma_{b2a4} [(f_{a1} - f_{b3}) - (f_{b2} - f_{a4})] - \Gamma_{a2b3} \Gamma_{b1a4} [(f_{a2} - f_{b3}) - (f_{b1} - f_{a4})] \right\}, \end{aligned}$$
approx. includes many-body forces and sums pp, hh, ph diagrams

In-medium SRG for nuclei Tsukiyama, Bogner, AS, in prep. decouple 1p1h, 2p2ph,... ApAh sectors from reference state want to suppress pphh and ph couplings, all other (normal-ordered) couplings annihilate reference state

minimal choice: $\eta(s) = [H^d(s), H(s)] = [H^d(s), H^{od}(s)]$

$$egin{aligned} H^{od}(s) &= g^{od}(s) + \Gamma^{od}(s) \ \Gamma^{od}(s) &= \sum_{pp'hh'} \Gamma_{pp'hh'}(s) a_p^\dagger a_{p'}^\dagger a_h a_{h'} + h.c. \end{aligned}$$

can be used to derive nonperturbative valence-shell effective interactions

Braun, Polonyi, AS, in prep.
density functional:
$$\Gamma[\rho] = \ln \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S[\psi^{\dagger},\psi] + \int J \cdot (\psi^{\dagger}\psi)}$$

with $S[\psi^{\dagger},\psi] = \int \psi^{\dagger} \Big[\partial_t - \frac{1}{2m}\Delta\Big]\psi + \frac{1}{2}\int \psi^{\dagger}\psi V_{2b}\psi^{\dagger}\psi + V_{3b}$

main idea:

start from mean-field (background potential) and include interactions

introduce background potential U into the path integral

density functional:
$$\Gamma_{\lambda}[\rho] = \ln \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S_{\lambda}[\psi^{\dagger},\psi] + \int J \cdot (\psi^{\dagger}\psi)}$$

with
$$S_{\lambda}[\psi^{\dagger},\psi] = \int \psi^{\dagger} \Big[\partial_t - \frac{1}{2m}\Delta + (1-\lambda)U_{\lambda}\Big]\psi + \frac{1}{2}\int \psi^{\dagger}\psi\lambda V_{2b}\psi^{\dagger}\psi + \lambda V_{3b}\psi^{\dagger}\psi$$

(auxiliary) background potential or (physical) trap potential

leads to flow equation

$$\partial_{\lambda}\Gamma_{\lambda}[\rho] = \left[-\boldsymbol{U}_{\lambda} + (1-\lambda)\partial_{\lambda}\boldsymbol{U}_{\lambda}\right] \cdot \rho + \frac{1}{2}\rho \cdot \boldsymbol{V}_{2\mathbf{b}} \cdot \rho + \frac{1}{2}\operatorname{Tr}\left[\boldsymbol{V}_{2\mathbf{b}} \cdot \left(\frac{\delta^{2}\Gamma_{\lambda}[\rho]}{\delta\rho\,\delta\rho}\right)^{-1}\right]$$

introduce kinetic and exchange-correlation part Γ_{λ} :

$$\Gamma_{\lambda}[\rho] = (1-\lambda) \boldsymbol{U}_{\lambda} \cdot \rho + \frac{\lambda}{2} \rho \cdot \boldsymbol{V}_{2\mathbf{b}} \cdot \rho + \tilde{\Gamma}_{\lambda}[\rho]$$

density functional:
$$\Gamma_{\lambda}[\rho] = \ln \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S_{\lambda}[\psi^{\dagger},\psi] + \int J \cdot (\psi^{\dagger}\psi)}$$

with $S_{\lambda}[\psi^{\dagger},\psi] = \int \psi^{\dagger} \Big[\partial_t - \frac{1}{2m}\Delta + (1-\lambda)U_{\lambda}\Big]\psi + \frac{1}{2}\int \psi^{\dagger}\psi\lambda V_{2b}\psi^{\dagger}\psi + \lambda V_{3b}$

main idea:

start from mean-field (background potential) and include interactions

$$\partial_{\lambda} \tilde{\Gamma}_{\lambda}[\rho] = \frac{1}{2} V_{2b}$$

start from mean-field (background potential) and include interactions currently: comparison to MC results for 1d model Alexandrou et al. (1989)

$$V_{2b}(x) = \sum_{i=1}^{2} \frac{V_i}{\sigma_i \sqrt{\pi}} e^{-\frac{x^2}{\sigma_i^2}}$$

density basis expansion scales favorably to heavy nuclei

benchmark results for real nuclei^{0.2} with coupled-cluster theory^{0.0}

Thanks to collaborators

Summary

Exciting era with advances on many fronts: EFT and RG

For the first time, approaches from light to heavy nuclei and for astrophysics based on the same interactions

Three-nucleon interactions are a frontier: they impact the structure and existence of neutron-rich nuclei and neutron-rich matter in astrophysics

Exciting intersections with problems in many related areas